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CHARACTERIZATION THEOREMS FOR INSURER EQUIVALENT UTILITY
PREMIUM CALCULATION PRINCIPLE

YK 519.8; 519.21

M.V. Pratsiovytyi, V.O. Drozdenko

Pestome. B po0OoTi mpencraBieHO psAl  XapakTepH3AI[IMHUX TeopeM M JCKUTbKOX OakaHuX
BJIACTUBOCTEH, SKUMH MOJE BOJIOJITH ab0 HE BOJOMITH MPUHIIMIT SKBIBAJCHTHOI KOPHCHOCTI CTPaXOBHKa
HiIpaxyHKy BapTOCTI CTPaXOBUX KOHTpakTiB. [IpecraBieHi TeOpeMH OXOIUTIOIOTH BIACTUBOCTI 8 THBHOCTI,
KOH3HUCTEHTHOCTI, ITEpPaTUBHOCTI Ta MYJBTHIDIIKATHBHOI IiHBapiaHTHOCTi. Pe3ympTath chOpMynboBaHi y
BHUDJISAII HEOOXIMHUX Ta JOCTATHIX yMOB BOJIOJIHHS 3raJ]aHMMH BJIACTHBOCTSAMH HAKIAJCHUX Ha (QYHKIIIIO
KOPHCHOCTI CTPaxOBHKA. XapaKTepH3aliiiHi TBEPHKCHHS ISl MPUHINITY HYJIHOBOI KOPHCHOCTI CTPaxOBUKa
cOopMYIIbOBaHI y BUTJISAAI HACTIAKIB 10 BIAMOBITHUX TBEP/PKCHB JIUIS MPUHIUITY CKBIBAICHTHOI KOPUCHOCTI
CTpaxoBHKa.

Pestome. B pabote mpeacraBiieH psii XapaKTePH3alUOHHBIX TEOPEM Ul HECKOJBKUX JKEIAeMBbIX
CBOWCTB, KOTOPBIMH MOXKET 00J1a/1aTh WK He 00JIaaTh MPUHIIMIT SKBUBAJICHTHOH MMOJIE3HOCTH CTPaxXOBIIMKA
MoJIcCUeTa CTOMMOCTH CTPAaxOBBIX KOHTPAaKTOB. [Ipe/icTaBieHHbIE TEOPEMbl OXBATHIBAIOT CBOWCTBA
AJITUTHBHOCTH, KOH3HCTECHTHOCTH, WUTCPATHBHOCTH W MYJIbTHILUIMKATHBHON WHBAapUAHTHOCTH. Pe3ynbTaThl
copMynHpOBaHbl B BHIE HEOOXOAUMBIX M [IOCTATOYHBIX YCIOBHH BBIMOJHEHUS! YIIOMSHYTBIX CBOMCTB
HAJIOKCHHBIX HAa (DYHKIUIO MOJIE3HOCTH CTPAXOBIMUKA. XapaKTepU3aIlMOHHBIC YTBEPIKIACHHS ISl TIPUHIIUIIA
HYJIEBOW TIIOJIE3HOCTH CTpPaxOBHIMKAa C(HOPMYJIMPOBaHbl B BHUJE CIEACTBHUH K COOTBETCTBYIOIIUM
YTBEPXKACHUSM ISl IPHHIIUITA SKBUBAICHTHOW MOJIE3HOCTH CTPAXOBIIUKA.

Abstract. Characterization theorems for several desirable properties that can be possessed or not
possessed by the insurer equivalent utility premium calculation principle are presented. Demonstrated
theorems cover cases of additivity, consistency, iterativity, and scale invariance properties. Results are
formulated in a form of necessary and sufficient conditions for attainment of the properties imposed on the
insurer's utility function. Characterizations for the insurer zero utility principle are formulated as corollaries of
corresponding characterizations for the insurer equivalent utility principle.
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1. Introduction

Let us consider a random variable X representing size of the insurance compensation related to
a particular insurance pact. Premium to be paid for the risk X will be denoted as 7[ X].

In majority of the cases the random variable X is assumed to be a non-negative one, i.e.,
it takes vale zero if the contract will not produce a claim and will be equal to the claim size if
there will be a claim. In some case, however, negative values of the variable X are also aloud;
such negative values are often interpreted as compensations which have to be paid by the
customer to the insurance company, for example, as penalties for violation of the contract
conditions.
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Let us now define several insurance premium calculation principles which we would like
to investigate.
Insurer equivalent utility premium for a risk X, which we denote as =z, ,[X], is defined
as a solution to the equation
UW) =E[UW +7;e, [X]=X)], 1)
where W is the insurer's capital at the moment when the contract is initiated, and the function
U(x)eC,(R) is the insurer's utility function, i.e. it satisfies conditions U'(x)>0 and

U'(x)<0 for xeR.

In some of the cases the insurer's utility function is selected in such a way that the value
U (0) represents insurer's utility at the moment when the contract is initiated. In such cases
equation (1) for the risk X is replaced by the equation

U (0) =E[U (z[X]-X)] )
and corresponding method of pricing of the insurance contracts is called insurer zero utility
premium calculation principle. Obtained in such a way premium in the article will be denoted as
ﬂ-i.z.u.[x]'

Sometimes the insurer equivalent utility premium calculation principle and the insurer
zero utility premium calculation principle are applied to some special classes of risks; as an
example of such a class one can mention the class of all non-negative risks, alternatively one
could mention the class of all non-negative risks bounded from above by some fixed real value,
etc. In such cases the domain of the function U (x) could be a subset of R such that the equation

(1) or, alternatively, equation (2), depending on chosen method of pricing, will preserve its
correct mathematical meaning, moreover, monotonicity and concavity properties of the function
U (x) should also be preserved.

Net premium for a risk X, which in the article will be denoted as z,,[X], is defined as
the expected value of the losses associated with the risk X, i.e.,
Tt [X]=E[X].
Exponential premium, dependent on a parameter £, for a risk X which in the article will
be denoted as 7., ,[X], is defined in the following way

Texp(p)[X] :%Iog(E[eﬂX ]), for S>0.

We will say that a premium calculation principle z[X] possesses:
additivity property if for any two independent risks X, and X, holds the identity
X, + X,1= 2l X 1+ 2lX,]; (3)
consistency property if for any risk X and any real constant ¢ (if a pricing method is defined

only for the non-negative risks then the constant ¢ can be claimed to be non-negative in order to
avoid situations when X +c¢ <0, i.e., situations when the value z[X +c] is undefined) holds the

identity

z[X +c]=x[X]+c; 4
iterativity property if for any two risks X and Y holds the identity
zlz[X Y11= z[X]; ()
scale invariance property if for any risk X and any positive real constant ® holds the identity
7[®X]=06x[X]. (6)

More information about the defined methods of pricing of the insurance contracts as well
as the properties that can be possessed by the insurance premium calculation principles can be
found, for example, in Asmussen and Albrecher (2010), Boland (2007), Bowers et al (1997),
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Buhlmann (1970), Dickson (2005), Gerber (1979), De Vylder et al (1984), De Vylder et al
(1986), Kaas et al (2008), Kremer (1999), Rolski et al (1998), Straub (1988).

We would like to emphasize that the research related to theorems of characterization type
for properties possessed by certain insurance premium calculation principles was initiated by the
Swiss mathematician Hans-Ulrich Gerber, see Gerber (1979).

2. Additivity Property

The following theorem describes the necessary and sufficient conditions for attainment of the
additivity property by the insurer equivalent utility premium calculation principle.

Theorem 2.1. The insurer equivalent utility premium calculation principle possesses the
additivity property if and only if U(x)=ax+b, for a>0, or U(x)=-ae”+y, for
min[a, £]> 0, i.e., only in the cases when it coincides with either the net premium principle or
the exponential premium principle.

Observe that the class of functions U (x) = —ae ™™ +y, for min[a,]>0, contains all
functions of the form U (x) = —z*, for some real constant 7 > 1.

Proof. Let us from the beginning prove the sufficiency of the statement. We start from the case
of U(x) =ax+Db, for a>0. Indeed, in this case for any two independent risks X, and X,, and
any insurer's initial capital W, from the equation (1) it follows
aW +b=E[aW + 7, [X;]1- X;)+b], for i=12,
and thus
Tieu[Xi 1 =E[Xi] = 7o [X], for =12
On the other hand, from the same equation it follows
aW +b =E[a(W + ;. , [X; + X,]- X, = X,) +Db],
hence
ﬂ-i.e.u.[xl + XZ] = E[Xl] + E[XZ] = ”i.e.u.[xl] + ”i.e.u.[XZL

so, we could see that the insurer equivalent utility premium calculation principle possesses the
additivity property in the case of the linear insurer's utility function.

Let us now switch to the case of U (x) = —ae ™ + y, for min[a, £] > 0. Here for any two
independent risks X, and X,, and any insurer's initial capital W, we get

B AW e XX .

-ae " +y =E[-ae y], for i=12,
which yields
1 BX; e
Moreover
- —BW+r; o [Xq+Xo]-Xq—X
—ae™ ) _E[-ce U0 DXt 17 7X0) +71,
hence
1 BX 1 BX
Tieu [ Xy + X, 1= — log(E[e ']+ log(E[e” ?]) = Tiou [ X1+ 7m0y [X5],

B B
and as we have seen, the additivity property is possessed by the insurer equivalent utility
premium calculation principle in the case of the exponential insurer's utility function.

Proof of the sufficiency was finished, so we can start to prove the necessity.
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Observe that the insurer equivalent utility premium calculation principle is invariant with
respect to the linear transformations of the function U (x), i.e., the principle based on the utility

function U (x) and the principle based on the utility function U (x) = LU (x) +1,, for 1, >0, will
produce the same premiums. Here the condition |, >0 is imposed because otherwise the

assumption of positivity of first derivative of the function U (x) will vanish.

In order to simplify the computations, we will fix the value of the insurer's initial capital
W, derive all possible representations (in the case when the insurer equivalent utility principle is

additive) for the function U (x) with
L =1/U W) and I,=-UW)/U W),
and then we will switch back to the function U (x).

Observe that the just defined utility function U (x) satisfies the following boundary
conditions
UW)=0, UW)=1, and U W)=x, (7
for some real constant x <0.

Let us now consider a risk X which takes only two possible values, namely t (here t is
any real number different from zero) and 0 with probabilities p and 1— p respectively. The

risk X can be viewed as a random function of the parameters p and t, and, therefore, within
the proof of Theorem 2.1 will be denoted as X .

Equation (1) based on the utility function U (x) for the risk X; will have the following

form
U W)=U W 477 0,4 [X p1-4)-p+U (W +77; 0, [ X 1) (L p). (8)
Putting p =1 into (8), obtain
OW)=UW + 7, [X,]-1). 9)
Since U (x) >0 for all x, then from (9) it follows
7. [ X{]=t. (10)

Let us calculate partial derivatives with respect to p from both sides of the equation (8)

— 0 -
0 =U (\N+ﬂi.e.u.[xtp]_t)'%”i.e.u.[xt)]'p+U(\N+7[i.e.u.[xt)]_t)

(11)
_, 0 _
+U W +ﬂi.e.u.[xtp])a—pﬂi,e,u.[x:,]-(l— p)~UW + 70, [XL]).
Substituting p =1 into the equation (11) and using the identity (10), obtain
0=0 W)- 2 i, [X}] +OW) -0 +1) 12)
p=1

Putting boundary conditions U(W)=0 and U (W)=1 into the equation (12), we obtain a
representation for the partial derivative with respect to the parameter p of the premium at the
point p =1, namely,
i7Z.i e.u [X ;]
op

Let us consider also a risk Y, independent of X, taking two possible values, namely h
(here h is any non-zero real number) and O with probabilities g and 1—q respectively. Being a

=U (W +t). (13)

p=1
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random function of the parameters h and q the risk Y within the proof of Theorem 2.1 will be

denoted as Yq“. Using manipulations similar to those performed with the risk X', one can
conclude that

ﬂi.e.u.[Ylh] = h, (14)
and that the partial derivative with respect to the parameter g of the premium at the point g =1
IS

9
aq
Now, let us look at a risk Z" defined in the following way
Zuh = XY
The risk Z;'; will take the values t+h, t, h, and O with probabilities pg, p(1-q),
(1- p)g, and (1- p)(1—q) respectively.
If the insurer equivalent utility principle is additive then the following must hold
ﬂi.e.u.[z :)r:}] = ﬂ-i.e.u.[x :3] + ”i.e.u.[Yqh]'
In this case equation (1) for the risk Z;'“q based on the function U (x) will have a form
UW) = UW + 736, [X 1+ Zieu [Yq 1=t =h)-pq
+ J(\N + ”i.e.u.[x tp] + ”i.e.u.[Yqh] _t)' p'(l_ q)
+ UW + 740, [Xp 147, [Yg 1-h)-- P)
+ UW +7,, [X14 730, [Yg L= )1~ Q).
Let us now calculate partial derivatives with respect to p from both sides of the equation

”i.e.u.[Yqh] = U(\N + h) (15)

q=1

(16)

(16)
0=0W +ﬂi,e,u,[x;]+ﬂi_e_u.[th]_t_h).a%,,i_e_u_[xtp].p.q

SO 4710, [X T+ e T~ =) g

O W+, X1 i 0102 7 (X120

FUW + 730, [X ]+ 710, [Yg' 1-1)-(1— ) @
AT 0 X1 i TN, [X 10 )
“OW + 710, [X b1+ g Y- )G
~0'W +7ri,e,u,[x:,]+zri,e,u,[vq“])a—im,e,u,[x;]-(1— p)1-0)
~UW + 7 ¢, [X 1+ 7i e [Yq D-(L— ).

The next step is to take partial derivatives with respect to the parameter g from both
sides of the equation (17), here we get
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0

- 0
U w +zri.e.u.[x;,1+m.e.u.[vq“]—t—h)E
- 0
+U (W +m.e.u.[x;]+7ri.e.u.[Yq“]—t—h)-%

- o
+U (\N "'7Z'i.e.u.[xt)]"'7Z-i.e.u.[Y(:1h]_t - h) a

O W + 7,0, [X 51+ 70,0 [Yg 1-t = h)

- )
+U (\N +7[i.e.u.[x:3]+”i.e.u.[Yqh]_t)'a_p
T t h 0
-U (\N +7Ti.e.u.[xp]+7z'i.e.u.[Yq ]_t)'%

- 0
+U (\N +7Zi.e.u.[x:)]+7ri.e.u.[Yqh]_t) %

_J(\N + ”i.e.u.[x tp] + ”i.e.u.[Yqh] _t)

- 0
+U" W +zri.e.u.[x;,]+ni.e.u.[vq“]—h)-%

- 0
+U (W +m.e.u.[x;]m.e.u.[vq“]—h)-%

U W + 70, [X 1+ 700 [Yq 1= 1)
W + 70, [X 1+ 70, [y 1- 1)
+U (\N +7T|eu[x ]+7z,eu[Yq D-—

_U (\N+7T|eu[x ]+7Z'|eu [Yq ])

U (\N+7T|eu[x ]"'”leu [Yq D-—

+U (VV + ”i.e.u.[x p] + ”i.e.u.[Yq ])

0
op
0
op
0
oq

NN 0
U(W)a—pﬂi.e.u.[XL] a0

p=1

”i.e.u.[xtp]

+U’ (VV)i
op

p=1

- 8
-uWw +t)aﬂi.e.u.[Yqh]

g=1

”i.e.u.[xtp]'

0
”i.e.u.[xtp]'a

0
|.e.u.[ti]'£

ﬂi.e.u.[Yqh]
— 0
+U (W)a_q

_G'W +h)-2
op
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tq 0 h

ﬂ-i.e.u.[xp]'aﬂ'i.e.u.[Yq ] p-q
”i.e.u.[xg]‘ p

”i.e.u.[Yqh]'q

0
%”i.e.u.[Yqh]' p- (1_q)

”i.e.u.[xt)]' p

ﬂi.e.u.[Yqh] : (1_ Q)

TiewlYe1- (1= p)-q

ﬂ-i.e.u.[xg] ’ (1_ p)

0
a”i.e.u.[Yqh]'q

TiewlYal- (1= p)-(1-0)

|.e.u.[XE>]‘(1_ p)

|.e.u.[Yqh] ’ (l_ q)

Putting p=qg=1 into the just derived equation, and using the identities (10) and (14),

g=1

”i.e.u.[Yqh]

g=1 (18)

”i.e.u.[x tp]

p=1

+UW)-UW +t)-UW +h)+U W +t+h).
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Substituting identities (13) and (15), as well as identities U (W)=0, U (W) =1, and
U (W)=, into the equation (18) we finally get an equation which the utility function U (x)
must satisfy if the premium calculation principle is additive

0=UW+h+t)+c0W +t)UW +h)-U W +t)UW +h)-U (W +h) O W +t).  (19)

Solving the equation (19), we will investigate separately cases of x =0 and x <0. We
start from the case of x <0. Since U (-) is a concave function, then the following inequality
takes place

U(W)“;(W”t)sﬁ(vv 1), (20)
Taking into account boundary condition U (W) = 0, inequality (20) can be rewritten as
U W +2t)<2U (W +1). (21)
Substituting t = h into the equation (19), obtain
0=UMW +2t)+xU *(W +t)—2U (W +1t)-U (W +1). (22)

In order to apply some asymptotic techniques, without of loss of generality, we assume
for the moment that the value of the parameter t is strictly positive. Using inequality (21) and
taking into account that U (W) =0 as well as U (x) >0, for x e R, from the equation (22) we
get

U’(vv+t)=J(W +2t_)+KLTZ(VV 1) _ 20 (W +t_)+KJZ(vv +1)

2U(W +t) 2UW +t)

Since x <0, then from inequality (23) it follows that the function U (-) must be bounded
from above because otherwise the value 1+ xU (W +t)/2 would be negative for sufficiently large
values of the parameter t and this would contradict with the assumption of positivity of first
derivative of the function U ().

Since the function U (-) is increasing and bounded and U (W) =0, then must exist a
positive finite limit of U (W +t) as the parameter t tends to plus infinity and moreover, must
exist the limit

=1+§U(W +1). (23)

limU W +1)=0, (24)
in addition to that for all h € R\{0} there exist the limit
 UW+t+h) . — T _
lim —=—————= limUMW +t+h) / [imUW +t) =1. (25)
t—+o0 U(\N +t) t—+o0 t—-+o0

Dividing both parts of the equation (19) by U (W +t), switching to the limit when t
tends to plus infinity, and using the limit relations (24) and (25), we obtain an equation

U W+h)=«UMW +h)+1. (26)
The equation (26) can be rewritten in the following equivalent form
AV W) +1]_ 27)
kUMW +h)+1
From the equation (27) it follows
kUMW +h)+1=e"“*"".c  forsomeconstant ceR. (28)

From (28), using boundary condition U (W) =0, (here, due to continuity of U (), the
value U (W) can be defined as lim,_,U (W +h)) we get
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. eK(W+h) . e—KW -1
UW +h)= , for heR\{0}. (29)
K
Due to continuity of the function U (-), equation (29) can be rewritten in terms of x e R
_ e)cx .e—KW _1
Ux)y=—————-. (30)
K

Taking into account that U (W) = x, using representation (30) and the transformation
identity

U =1UX)+l,, for I,=1/U W) and I,=-UW)U W), (31)
we finally get corresponding admissible representation for the original utility function U (x)
' -0Tww
U =YW T s U W)y (32)
U W) u'w )

From the representation (32) it follows that in the case of U (W) <0 the function U (x)
must be a function of the form
U(X)=-ae ™ +y
for some real constants «, A, and y. Moreover conditions U (W) >0 and U (W) <0 imply
additional restrictions on the parameters « and £, namely, both of them must be strictly
positive constants, or equivalently, min[«, ] > 0.

Let us now switch to the case of x = 0. In this case the equation (19) will be simplified to
the following one

0=UW +t+h)-U W +t)-U W +h)-U (W +h)-U W +t). (33)
Let us assume for a moment that the function U () is bounded from above. Since
derivative of the function U () is strictly positive, then in the assumed case must exist the limit

limU W +1) =0. (34)

t—>+0

If the function U (-) is increasing and bounded with U (W) =0 then there exist a finite

limit
limUW +t)=¢>0, (35)
t—>+0
and, moreover, for all h e R\{0} there exist the limit
lim YW O +t+h) / lim GO +1) =1 (36)

t—+o0 LT(\N +t) t—+o0
Combination of (34) and (35) yields
lim Uwt)_ lim U' (W +t) / lim U(\N+t) 0. (37)

t—+o0 U (\N +t) t—>+0
Dividing both sides of the equation (33) by U (W +t), switching to the limit as the
parameter t tends to plus infinity, and using the limit relations (36) and (37), obtain
UMW +h)=1 forallheR\{0}. (38)
The equation (38) contradicts with the limit relation (34). This means that the assumption
of boundedness from above of the function U (-) in the case of x =0 was wrong. Therefore in
the case of x =0 must hold the following limit relation
limU (W +t) = +oo, (39)

t—>+o0
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Since we analyze the limit behavior of the equation (33) when the parameter t tends to
plus infinity, then for any fixed h e R\{0}, without of loss of generality, we may assume that
the parameter t is larger than the parameter h. Due to concavity of the function U (-), for any
h >0, from inequality

W+h<W +t<W +t+h
forany 6 €[0, 1] it follows

U@W +h)+@1-0)W +t+h)) > QUMW +h)+1-0)UW +t+h). (40)
Putting € = h/t into (40), obtain
U(;(\N Thy+ (t_h)(\’\t’ +t+h)) > ? W +h)+—U(\N +t+h)
or equivalently
UW +t) > %U(\N +h)+%U(W +t+h). (41)
It is more convenient for us to write inequality (41) in the following form
ﬁU(VV+t)—%U(VV+h) > GW +t+h) (42)
Observe that
—U(\N+t)—LU(\N+h) ~ UMW +t) as t— +oo. (43)

—h
Here notation

g,(t) ~g,(t) as t—+ow
means
- 0,(1) _
lim =1
oo gz(t)
Since derivative of the function U (-) is strictly positive, then, for any h>0 and any
admissible t, holds inequality

UMW +t+h)>U W +t). (44)
Combination of (42) and (44) yields
ﬁﬁ(\/\/u)—%m\/\/m) > W +t+h) > GW +1). (45)
Switching to the limitas t — +o0 and using (43), obtain
fim YW s o (46)
tsto U (W +1)
In the case of h <0 for t large enough (namely for t > 0) hold inequalities
W+h<W +t+h<W +t. (47)

From the inequalities (47) due to concavity of the function U () for any & <[0, 1] it
follows

U@W +h)+(1-0)(W +1)) > BUW +h)+(1-6)U (W +1). (48)
Substituting € = h/(h—t) into the inequality (48), obtain
W +t+h) > hi_tU(\N+h)+t_LhU(W+t). (49)
Observe that
hL_U(\N+h)+—U(\N+t) ~ UW +t) as t— +o. (50)
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Since h <0 and U () is an increasing function, then

UMW +t)>U W +t+h). (51)
Combination of (49) and (51) yields
TW+t) > GW +t+h) > thU(\N+h)+tLhU(W+t). (52)
Switching to the limit as t tends to plus infinity and using the limit relation (50), we get
lim YWD graih<o. (53)
tot+o U (VV +t)

Since U (-) is a non-increasing (because U " (-) < 0) positive function, then from the limit
relation (39) it follows
||m—U_(\N+t) =0. (54)
to+o U (W +1)
Dividing both sides of the equation (33) by U (W +t), switching to the limit as t tends to
plus infinity and using the limit relations (46), (53), and (54), obtain
U W+h)=1, for heR\{0}. (55)
Due to continuity of the function U (-), equation (55) can be rewritten in terms of the
parameter x € R, namely,
U (x)=1. (56)
From the equation (56), using boundary condition U (W) =0, we obtain the second
admissible representation for the utility function U ()

U(x)=x-W. (57)
Combining (57) with the transformation identity
U =1UX)+l, for I,=1/UW) and I,=-UW)U W), (58)
we finally get corresponding admissible representation for the original utility function U (x)
UX)=U W)(Xx=W)+u(Ww). (59)

Equation (59) means that the tangent straight line to the function U (x) at the point W coincides
with the function U (x) itself, and hence the function U (x) must be a function of the form
U(x)=ax+b
for some real constants a and b. Moreover, the constant a must be a strictly positive constant
because otherwise this would contradict with the assumption of positivity of first derivative of
the function U (x) .
This completes the proof of Theorem 2.1. O

Let us now show that the insurer equivalent utility premium principle coincides with the
net premium principle if and only if U (x) = ax+b, for a >0, and coincides with the exponential
premium principle if and only if U (x) = —ae ™ + y, for min[a, 5] > 0.

For this reason we will need the following inequality

”exp(,b’)[x] :%IOQ(E[eﬁX ]) = %Iog(eﬁE[X]) = E[X] = ”net[x]a

and, moreover, exact equality in the inequality E[e”*]1>e”5X] appears if and only if
P{X =C}=1 for some constant C eR. Therefore, generally speaking, the net premium
principle is not a special case of the exponential premium principle and viceversa.
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Let us now assume that for some function U (x), different from the exponential function,
the insurer equivalent utility premium principle will be equivalent to the exponential premium
principle. Then, due to additivity of the exponential premium principle, such method of pricing
must be additive. However in the proof of Theorem 2.1 was shown that the insurer equivalent
utility premium calculation principle is additive if and only if U(x) =ax+b, for a>0, and
U(X) = —ae ™ + y, for min[a, ] > 0. Here the case of U (x) = ax+b, for a> 0, corresponds to

the net premium principle, which, as was demonstrated, generally speaking is not a special case
of the exponential premium principle. As we see, original assumption about the existence of a
non-exponential insurer's utility function U (x) which would produce a principle equivalent to

the exponential premium principle leads to a contradiction. Therefore, the case of
U(x) = —ae ™ + y, for min[a,S]> 0, is indeed the only case when the insurer equivalent utility

premium principle is equivalent to the exponential premium principle.
Using similar contradiction technique one can conclude that the case of U (x) = ax+b,

for a >0, is the only case when the insurer equivalent utility premium principle is equivalent to

the net premium principle.

Since the insurer's initial capital in the proof of Theorem 2.1 was chosen arbitrary and no
restriction on it had been used within the proof, then we can formulate the following corollary to
Theorem 2.1.

Corollary 2.1. The insurer zero utility premium calculation principle possesses the additivity
property if and only if U(x)=ax+b, for a>0, or U(x) =—ae”™ +y, for min[a, 1> 0, i.e.,
only in the cases when it coincides with either the net premium principle or the exponential
premium principle.

3. Iterativity Property

The following theorem describes the necessary and sufficient conditions imposed on the insurer’s
utility function under which the iterativity property is possessed by the insurer equivalent utility
premium calculation principle.

Theorem 3.1. The insurer equivalent utility premium calculation principle possesses the
iterativity property if and only if U(x)=ax+b, for a>0, or U(X)=-ae ™ +y, for
min[e, #]> 0, i.e., only in the cases when it coincides with either the net premium principle or
the exponential premium principle.

Proof. Let us from the beginning prove the sufficiency of the statement. We start from the linear
utility function U (x) = ax+b, for a >0, and show that in this case the insurer equivalent utility
premium principle is equivalent to the net principle. Indeed, here for any risk X, and any
insurer's initial capital W, equation (1) will be simplified to the following one
aW +b=E[aW + 7;,,[X]-X)+D],
therefore, in the case of the linear insurer's utility function,
”i.e.u.[x] = E[X] = ”net[x]-
Then, for any two risks X and Y, any insure's initial capital W, and the same insurer's utility
function, form the equation (1) we get
aW +b=aW +ar,  [X |Y]-aE[X |Y]+Db,
therefore, in the case of the linear insurer's utility function,
Tieu X IYI=EIX Y],
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moreover, from the same equation, it follows
aW +b=aW + a'7Z-i.e.u.[”i.e.u.[x |Y]] - aE[”i.e.u.[X |Y]] +b,
and we finally get
”i.e.u.[”i.e.u.[x |Y]] = E[”i.e.u_[x |Y]] = E[E[X |Y]] = E[X] = ”net[x] = ”i.e.u.[x]
thus, the iterativity property is possessed by the insurer equivalent utility principle in the case of

the linear insure's utility function.
Let us now switch to the case of the exponential insurer's utility function, i.e., the case of

U(X)=—ae ™ +y, for min[a, ]>0. We show first that this is the case when the insurer

equivalent utility premium principle is equivalent to the exponential premium principle. Here for
any risk X and any insurer's initial capital W from the equation (1) we get

which yields

m_e.u_[X]zélog(E[eﬂXD — T X1

Then, for any two risks X and Y, any insurer's initial capital W, and the same
exponential utility function, from the equation (1) we get
—ae M 4y =—qe M e MMM E[ePX Y14y,
therefore, in the case of the exponential insurer's utility function

ni.e.u.[XJ:%IogE[eﬂX]) = T [ X1

Moreover, from the equation (1) for the risk ;. ,[X |Y] in the case of the exponential utility
function, namely,

—ae P 4y = _ge P g Prelme XN Ee AT XV 1y,
obtain

1
1 iy 1 ~B-—log(E[e" Y1)
e 7o [X 1 Y11= 2 log(Ee ) = log (Ele

1 _ 1 _
=5 0O(EELe" Y1) = Tog(Ele ™ 1) = ey [X]

= Tieu[X],
hence, the iterativity property is also possessed by the insurer equivalent utility principle in the
case of the exponential utility function.
Proof of the sufficiency was finished, so we can start to prove the necessity.
Let us now consider a risk X taking only two possible values, namely t (here t is any
real number different from zero) and 0 with probabilities p and 1- p respectively. Being a

random function of the parameters t and p within the proof of Theorem 3.1 the risk X will be
denoted as X .

Equivalent utility equation (1) for any insurer's initial capital W and any insurer's utility
function U (-) for the risk X; will have a form

UW)=UW +7,,,[X,]-1)- p+UW + 7., [X;])- (1~ p). (60)
From the equation (60), assigning p =0, we get
U(\N):U(W'i_ﬂ.i.e.u.[x(t)])' (61)

Since U (x) >0 for all x, then from the equation (61) it follows
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7., [Xs] = 0. (62)
Substituting p =1 into the equation (60), obtain
UW)=UW +7,,[X;]-1), (63)
again, since U (x) >0 for all x, then from the equation (63) we get
7 X 1=t (64)

Differentiation of the equation (60) with respect to the parameter p yields
! 0
0= uUw +ﬂ-i-e-u-[x:)]_t)‘%ﬂi.e.u.[xtp]' p+UW +7Ti,e.u.[X:J]—t)
0 (65)
U W+ ﬂi_e_u_[ti]) '%ﬂi.e.u.[xtp] ‘(1-p)-uWw +7z'i_e_u_[XE,]),

Taking into account strict monotonicity of the function U (-), the equation (65) can be
rewritten in the following way

U XED-U Xt
0 xge YW mLDGD VW e, XD 6)
op UW+7z X ]1-t)p+U W + 7., [ X, D(1- p)
From the representation (66) it follows
9 2 IXU1%0, for t=0. (67)
op e

Substituting p =0 into the equation (65), using the identity (62), we get an equation
which will be used a bit later, namely,

0=UW-)-UW)+U' W) 7, [X]] (68)
p p=0
Let Y be a variable taking values h, and h, (here h , for i=1,2, are arbitrary real

numbers from the interval [0, 1]) with probabilities 1/2 and 1/2. And let X be a risk with the
following conditional distribution, defined under known values of the variable Y,

P{X =t)y =h}=h, for i=12

P{X =0 =h}=1-h, for i=12
Using the formula of complete probability, we can find out the unconditional distribution
of the risk X', namely,

PLX == 3 PLX =t =} P{Y —hy= e,
i=1

h,

2
As we see, unconditional distribution of the risk X coincides with distribution of the risk X%,

2
P{X =0}= Y P{X =OF =h}P{Y =h}-1-1*
i=1

where p = (h, +h,)/2, therefore, the following identity must hold
ﬁi.e.u.[)?] = ﬂ-i.e.u.[x tﬁ] (69)
Observe that the equivalent utility equation (1) for 7., [X|Y =h], here i =1,2, namely,

1.e.u.

UW) =UW +7;0, [X) = h]-t)-h +UW + 7, [X)Y =h])-(1-h),

1.e.u.

1.e.u.

coincides with the equivalent utility equation for 7 [Xftw ], here also i =1,2, namely,
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UMW) =UW +7,0, [XE1-0)-h +UW + 7., [XL])-(1-h),

therefore, the following identity must hold

o [XIY =h]= 7, [X}], for =12 (70)
moreover, in the case of the iterative insurer equivalent utility premium principle
ﬂ-i.e.u.[)?] = ﬂ-i.e.u.[ﬂ-i.e.u.[)?|Y]]' (71)
The identity (71), in combination with (1), implies the equivalent utility equation
UW)=EUW +7,,,[X]- 7., [X Y]] (72)

Taking into account possible values of the variable Y, the equation (72) can be rewritten
in the following equivalent form

13 - -
U (\N) = EZU (\N + ”i.e.u.[x]_ﬂ-i.e.u.[x |Y = h|])
i=1
Taking into account identities (69) and (70) we can modify the equation (72) a bit further
1 2
UW) =22 UMW 4710y [X o, 1= i X4 ): (73)
i=1 2

Let us now differentiate equation (73) with respect to h,, obtain

10 0 t
0 = _U (\N+7T|eu[x + ] ”leu[ ]) |eu[ + ] |.e.u.[X ]
hlzh hy |: ahl h1 h, h1 hl:l

+§U (\N +”i.e.u.[xr11+2hz]_7ri.e.u.[xftlz ])Eaﬂi.e.u,[xazhz]'

Let us also differentiate just obtained equation with respect to h,, here we get

2
1 10 0
0 = EU (\N"'”leu[xhlzh 1- ﬂleu[xhl])|:26h1 |eu[ hl+h 1- h1 |.e.u.[X;|1]:|
1 1.0
+EU (\N +7Ti_e.u.[X}t~|1+2hZ] leu[ hl]) 4(8h1) |.e.u.[XFH+2hZ]
1 . t t
_EU (\N+”i.e.u.[xh1;hz] |eu[ hl]) ( hl) |.e.u.[xhl]

2
1 ..
+EU (W+7Ti.e.u.[xaliz]—”i.e.u.[ ]){Zahl leu[ hl+h ]}

2
1. 15
+2U W+ 730, [X by i, 1= 7o [Xn, D= [Xpan, 1
2 i.e.u hl% i.eu 4(ahl) Tieu. hl+
Putting h, = h, =:h into the last equation, obtain
1 10

’ ] 3 & t
EU (\N)":E%”i.e.u.[xh]} (W){_ZW i.e.u.[Xh]}

ol I 1 0° t
(\N)|:2@h |.e.u.[xh]}+§U (\N){Zwﬂi.e.u.[xh]},

0 =
(74)
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simplifying (74) we get differential equation for 7. [X;] as a function of the parameter h
defined for 0 <h <1, namely,
2 2
U"ON){%@&U_[X;]} =U'W)- L
with boundary conditions, which follow from (62) and (64),
Tieu[Xo]1=0 and 7z, [X;]=t. (76)
Since the function U (-) is a concave function, then U (W) <0. Let us solve the equation
(75) separately for the cases of U (W)<0 and U (W)=0. We start from the case of
U (W) =0. In this case the equation (74) will be simplified to the following one

i.e.u.[xr:]' (75)

o’ =
W”i.e.u.[xh] =0. (77)
Solution to the equation (77) must have a form
7o [Xh]=Kh+x,, forsome constants x; and x,. (78)

Applying boundary conditions (76) to the solution (78) we see that the solution to the
equation (75) with boundary conditions (76) in the case of U (W) =0 is

ﬂ-i.e.u.[xrt]] = ht (79)
Differentiatiation of the obtained solution (79) with respect to h at the point h =0 yields
0
—r.. X ] =t 80
o 0] (80)

Substituting representation (80) into the equation (68), we finally get an equation which
the utility function U () has to satisfy in the case of the iterative insurer equivalent utility

premium calculation principle, namely,
0=UW —t)-UW)+U (W)t. (81)
The variable t was taken from R\{0}, however, due to continuity of the function U (),
making substitution W —t =: x, equation (81) can be rewritten in terms of the original parameter
xeR:
UX)=U W) -(x-W)+UW). (82)
Representation (82) can be interpreted as follows: the tangent straight line to the function
U(-) at the point x=W coincides with the function U(:) itself, therefore, in the case of
U" (W) =0, the function U (-) must be a function of the form
U(x) =ax+Db,
for some real constants a and b. Assumption of U (W) >0, which follows from the original
assumption of positivity of first derivative of the function U (-), gives us additional restriction on
the parameter a: parameter a must be a strictly positive constant.
Let us now solve the equation (75) in the case of U (W) <0. For the computational

convenience we make a substitution

Z(h)::ai

h ”i.e.u.[xra]v

and rewrite the equation (75) in the following form
U W)-z*(h)=U W)Z (h). (83)
Taking into account U (W) >0 as well as representation (67), with replacement of the
parameter p by the parameter h, equation (83) can be rewritten in the following way
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4z _Y Wy, (84)
U (W)
Solution to the equation (84) is
-ZYh)= U—(W) h—x;, for some constant ;.
U W)

Switching back to z;,,[X,], obtain

0 1
7 IXq=— 85
ah ﬂl.e.u.[ h] U (\N) ( )
K —— h
U W)
Equation (85) can be slightly modified to the following one
U’ d{l(‘l LLj(W) }
dﬂ.i.e.u.[xrt]]:_ (\N) (\N) (86)
uw) oUWy,
U (W)
Solution to the equation (86) is
U u”
T [Xp]=— 0 (\(\A/\I/)) 09 |x; — ,(W)h+/<2, for some constant x,
or equivalently,
(W)
(W) (W) w)
: 87
|eu[ h] U (V\/) g(’(l U(W) j ( )

Applying boundary condition r,,,[X;]1=0 to the solution (87), we get

" u'w)
log (zcl—u,(w)-OJ U 2o,
W)
and hence
_KZU','(W) KZU"'(W)
ke YW =1 whichmeansthat x =e Y™,
Using just obtained values of «,, solution (87) can be rewritten in the following way
(W)
v
TienXp] = (W) log 1 (W) (88)
u'w) uw )
Application of the boundary condition 7, [X,]=t to the solution (88) implies
0" W), | U W)
logl-——21e YW (89)
U W) U w)
Since U (W) >0 and at the moment we consider the case of U" (W) <0, then
u"(w)

U’,!(W)<O, hence, 1—ﬂ W) S
U Ww) u'w)

therefore, identity (89) can be rewritten in the following way
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Uw) uw)
U (W) TUW) L UW) g (90)
u (VV)

Combining solution (88) with the identity (90), we finally get the solution to the equation
(75) satisfying boundary conditions (76) in the case of U" (W) <0, namely,
U ‘W)
Tien [ Xh]= (W)Iog1+h e UMW
u (W)

Knowing =;,,[X;], we get
W)
0 U, e uw) -1
_ﬂ.lelJ[Xft]]:_ r/(\N) m . (91)
ah u“w) ()
1-h+he YW
From (91) it follows
, u’'w)
0 U —t—
P £33 L PR Y | (92)
oh heo u’'w)

Combining (92) with the equation (68), we finally get an equation which the function
U (-) has to satisfy in the case of the iterative insurer equivalent utility premium calculation

principle, namely,

Uw)| “ow
0=UW —-t)-UW)-U W)——={ e -1\ (93)
u"w)
The parameter t was taken from R\{0}, however, due to continuity of the function
U (-), making substitution W —t =:x, equation (93) can be rewritten in terms of the original

parameter xeR:

u'w) (W)
009U W) M) o vy W)

U Ww). (94)
u"w ) u'w )
From the representation (94) it follows that in the case of U™ (W) <0 the function U (x)
must be a function of the form

UX)=-ae™+y
for some real constants «, S, and y. Moreover conditions U (W) >0 and U (W) <0 imply
additional restrictions on the parameters « and £, namely, both of them must be strictly
positive constants, or equivalently, min[«, ] > 0.
This completes the proof of Theorem 3.1. O

In a way similar to the one presented in the previous section, the proof of Theorem 3.1
can be used for showing that the case of U(x) =ax+b, for a >0, is the only case when the

insurer equivalent utility premium principle is equivalent to the net premium principle and that
U(X)=-ae” +y, for min[a,5]>0, is the only case when the insurer equivalent utility

premium principle is equivalent to the exponential premium principle.
Since we did not use any restrictions on the insurer's initial capital within the proof of
Theorem 3.1, then we can formulate the following corollary to Theorem 3.1.
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Corollary 3.1. The insurer zero utility premium calculation principle possesses the iterativity
property if and only if U(x) =ax+b, for a>0, or U(x) =—ae ™ +y, for min[e,$]>0, i.e.,
only in the cases when it coincides with either the net premium principle or the exponential
premium principle.

4. Consistency Property

In contrast to the customer equivalent utility premium calculation principle which possesses the
consistency property only for some special choices of the utility function, the insurer equivalent
utility principle (and also, as a consequence, the insurer zero utility principle) possesses the
consistency property with arbitrary choice of the utility function. Indeed, since for any risk X,

any insurer's initial capital W, any insurer's utility function U (:), and any ¢ € R hold identities
UW) = E[UW + 7., [X +c]-(c+ X))]

E[UW + (7., [X +c]-¢) = X)]

EUW + 7, [X]-X)] = UW),

then
T [X+c]-c=x,,[X], or equivalently, =, [X+c]=x,,[X]+cC,
so, we observe the fulfillment of the mentioned property.

5. Scale Invariance Property

The following theorem describes the necessary and sufficient conditions of attainment of the
scale invariance property by the insurer equivalent utility premium calculation principle.

Theorem 5.1. The insurer equivalent utility premium calculation principle possesses the scale
invariance property if and only if U(x) =ax+b, for a>0, i.e, only in the case when it

coincides with the net premium principle.

Proof. We start from the sufficiency. In the case of U(x) = ax+b, with a >0, for any risk X
and any insurer's initial capital W, from the equation (1) it follows
aW +b=E[aW +ar;, ,[X]-aX +b]=aW +ar; ., [X]-aE[X]+D,
and thus
”i.e.u.[x] = E[X] = ”net[x]-

On the other hand, from the equation (1), for any ® >0, the same risk X, the same

insurer's initial capital W, and the same insurer's utility function, it follows
awW +b =E[aW +ar;, , [0X]-a®X +b]=aW +ar; ,[0@X]-a®E[X]+Db,
hence
7 e [OX]=OE[X] =0, [X],

and we see that the scale invariance property holds in this particular case.

The proof of the sufficiency was completed, so we switch to the necessity.

To show that the insurer equivalent utility premium calculation principle with a non-
linear insurer's utility function U(x) will not possess the scale invariance property, we will

choose a risk X which takes only two possible values, namely, 0 and t (here t is a non-zero
real parameter) with probabilities 1— p and p respectively. The risk X can in this case be

considered as a random function of two parameters, namely p and t, and, therefore, within the
proof of Theorem 5.1 it will be denoted as X :)
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For any insurer's initial capital W, and any insurer's utility function U (-), the equivalent

utility equation (1) for the risk X; will take a form
U (\N) =U (W +7z.i.e.u.[X:)]_t) ’ p+U (VV +7Ti.e.u.[x;]) (1_ p) (95)

Substituting p =1 into the equation (95), we get

UW) = UW + 70, [X]-01+U W + 73, [X1])0 (96)
=UWw +7[i.e.u.[X1t]_t)-
Since U (x) is a strictly increasing function, then the identity (96) yields
(97)

7 X[ 1=t
Taking partial derivatives with respect to p from both sides of the equation (95), obtain

0 = U'W 7300 [X ]~ o [XE 1P+ UW + 730, [X]-1)
o
(98)

, 0
+U W +7fi.e.u.[XL])a—pﬂi.e.u.[Xfo]-(l— p)-UW +7ri_e_u_[XI)]).
Substituting p =1 into the equation (98), and using the identity (97), we obtain an equation

=UW +1)-UW). (99)

uwr%mmwm

Since the premium calculation principle has to be scale invariant, then for any insurer's
initial capital W, and any positive constant ®, the insurer's equivalent utility equation (1) for the

p=1

risk ®X can be written in the following way
U (\N) =U (\N +®7Z-i.e‘u.[xt)]_®t) P +U (\N +®7[i.e‘u.[xty]) ’ (1_ p) (100)

Calculating partial derivatives with respect to p from both sides of the equation (100), obtain

, 0
0=U (\N +®7Z'i.e.u.[xtp]_®t)'®'%”i.e.u.[xtp]'p +U (\N +®7Z-i.e.u.[X:)]_®t)
3 (101)
+ U,(\N +®”i.e.u.[xE)])'G)%ﬂ-i.e.u.[xtp]'(l_ p) -U (\N +®7Ti.e.u.[xtp])-
Substituting p =1 into the equation (101), and using the identity (97), we obtain an equation

=U (W +0t)-U W). (102)

U(\N)@iﬂ'leu[X;]
op

p=1
Since ® >0, then the equation (102) can be rewritten in the following way
Uw)-Z,, xy) = 2 EOOUW) (109
op C)

Note that the equations (99) and (103) have equal left-hand sides, and hens their right-
hand sides also have to be equal; this finally gives us an equation which the insurer's utility
function has to satisfy for the premium calculation principle to be scale invariant, namely,

(104)

W +t-uw) = 2HED=EE)
Taking partial derivatives with respect to the parameter t from both sides of (104) we get
U W+t)=U (W +0t). (105)
By fixing values of the parameters W and t, and changing values of the parameter ®, we will
make U (W +®t) a function of changing variable while the value U (W +t) will be a fixed
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constant. Using this technique and taking into account monotonicity of the function U(-) and

continuity of the function U'(-), since U(-)eC,(R), as well as using equation (105) we
conclude that
U'(x)=a>0, for xeR.
Integration yields
U(x)=ax+b, for xeR, and some constant a > 0.

Let us give also a geometrical interpretation showing that the non-linear insurer's utility
functions will not satisfy the equation (104). Let us consider two triangles: the first one will be
formed by the points (W, UW)), W +t,UW)), (W +t,U(W +t)) and the second one will be
formed by the points (W,UW)), (W +06t,UW)), (W +06t,U(W +06t)). Observe that both
triangles are right-angled triangles, they have a common vertex at the point (W,U(W)), and,
moreover, the points (W,UW)), (W +t,UW)), and (W +®t,U(W)) lie on the same straight
line. With out of loss of generality, equation (104) can be rewritten in the following way

U(\N+t)—U(\N):U(\N+®t)—U(\N). (106)
W +t)-W W +06t)-W

Geometrically, equation (106) can be interpreted as follows: ratio of the cathetuses in one
of the triangles is equal to the ratio of the cathetuses in the other triangle, hence our two
considered triangles are similar triangles. Due to the common vertex, the cathetuses which lie on
a common straight line, and the vertexes which lie on the same half-plane with respect to the
mentioned line, we conclude that the hypotenuses will also lie on a common straight line; in the
other words, the points (W +©Ot,U (W + ®t)), for any initial capital W, all non-zero t, and all
® >0, will form a straight line. So, we can conclude that the insurer's utility function U (x) is a
linear function, i.e., a function of the form U (x) = ax +b. Initial assumption of positivity of first
derivative of the function U (x) gives us additional restriction on the parameter a: parameter a
must be a strictly positive constant. This completes the proof of Theorem 5.1. 0

Applying contradiction technique, proof of Theorem 5.1 can be used for showing that the
case of U(x) =ax+b, for a>0, is the only case when the insurer equivalent utility premium
principle coincides with the net premium principle. Indeed, let us assume that for some function
U(x), different from the linear function, the insurer equivalent utility principle will be
equivalent to the net premium principle. Then, due to the linearity property of the expectation,
such method of pricing must be scale invariant. However it was shown in the proof of Theorem
5.1 that the only case when the insurer equivalent utility principle will be scale invariant is the
case of U(x) =ax+h, for a> 0, so we come to a contradiction.

Due to the arbitrary choice of the insurer's initial capital in the proof of Theorem 5.1 and
no restrictions on it within the proof, the following useful corollary to Theorem 5.1 can be
formulated.

Corollary 5.1. The insurer zero utility premium calculation principle possesses the scale
invariance property if and only if U(x)=ax+b, for a>0, i.e., only in the case when it
coincides with the net premium principle.
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