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Резюме. В роботі представлено ряд характеризаційних теорем для декількох бажаних 
властивостей, якими може володіти або не володіти принцип еквівалентної корисності страховика 
підрахунку вартості страхових контрактів. Представлені теореми охоплюють властивості адитивності, 
конзистентності, ітеративності та мультиплікативної інваріантності. Результати сформульовані у 
вигляді необхідних та достатніх умов володіння згаданими властивостями накладених на функцію 
корисності страховика. Характеризаційні твердження для принципу нульової корисності страховика 
сформульовані у вигляді наслідків до відповідних тверджень для принципу еквівалентної корисності 
страховика. 

Резюме. В работе представлен ряд характеризационных теорем для нескольких желаемых 
свойств, которыми может обладать или не обладать принцип эквивалентной полезности страховщика 
подсчета стоимости страховых контрактов. Представленные теоремы охватывают свойства 
аддитивности, конзистентности, итеративности и мультипликативной инвариантности. Результаты 
сформулированы в виде необходимых и достаточных условий выполнения упомянутых свойств 
наложенных на функцию полезности страховщика. Характеризационные утверждения для принципа 
нулевой полезности страховщика сформулированы в виде следствий к соответствующим 
утверждениям для принципа эквивалентной полезности страховщика. 

Abstract. Characterization theorems for several desirable properties that can be possessed or not 
possessed by the insurer equivalent utility premium calculation principle are presented. Demonstrated 
theorems cover cases of additivity, consistency, iterativity, and scale invariance properties. Results are 
formulated in a form of necessary and sufficient conditions for attainment of the properties imposed on the 
insurer's utility function. Characterizations for the insurer zero utility principle are formulated as corollaries of 
corresponding characterizations for the insurer equivalent utility principle.  
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1. Introduction 

 
Let us consider a random variable X  representing size of the insurance compensation related to 
a particular insurance pact. Premium to be paid for the risk X  will be denoted as .][Xπ  

In majority of the cases the random variable X  is assumed to be a non-negative one, i.e., 
it takes vale zero if the contract will not produce a claim and will be equal to the claim size if 
there will be a claim. In some case, however, negative values of the variable X  are also aloud;  
such negative values are often interpreted as compensations which have to be paid by the 
customer to the insurance company, for example, as penalties for violation of the contract 
conditions. 
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Let us now define several insurance premium calculation principles which we would like 

to investigate. 
Insurer equivalent utility premium for a risk ,X  which we denote as ,][i.e.u. Xπ  is defined 

as a solution to the equation  
 i.e.u.( ) [ ( [ ] )],U W U W X Xπ= + −E  (1) 

where W  is the insurer's capital at the moment when the contract is initiated, and the function 
( ) ( )2U x C∈   is the insurer's utility function, i.e., it satisfies conditions 0>)(xU '  and 

0)( ≤xU ''  for ∈x . 
In some of the cases the insurer's utility function is selected in such a way that the  value 

(0)U  represents insurer's utility at the moment when the contract is initiated. In such cases 
equation (1) for the risk X  is replaced by the equation  

 (0) [ ( [ ] )]U U X Xπ= −E  (2) 
and corresponding method of pricing of the insurance contracts is called  insurer zero utility 
premium calculation principle. Obtained in such a way premium in the article will be denoted as 

.][i.z.u. Xπ  
Sometimes the insurer equivalent utility premium calculation principle and the insurer 

zero utility premium calculation principle are applied to some special classes of risks; as an 
example of such a class one can mention the class of all non-negative risks, alternatively one 
could mention the class of all non-negative risks bounded from above by some fixed real value, 
etc. In such cases the domain of the function )(xU  could be a subset of   such that the equation 
(1) or, alternatively, equation (2), depending on chosen method of pricing, will preserve its 
correct mathematical meaning, moreover, monotonicity and concavity properties of the function 

)(xU  should also be preserved. 
Net premium for a risk ,X  which in the article will be denoted as ,][net Xπ  is defined as 

the expected value of  the losses associated with the risk ,X  i.e.,  
 net[ ] [ ].X Xπ =E  
Exponential premium, dependent on a parameter ,β  for a risk X  which in the article will 

be denoted as ,][)(exp Xβπ  is defined in the following way  

 ( )exp( )
1[ ] log [ ] , for 0.XX eββπ β
β

= >E  

We will say that a premium calculation principle ][Xπ  possesses: 
additivity property if for any two independent risks 1X  and 2X  holds the identity  

 ];[][=][ 2121 XXXX πππ ++  (3) 
consistency property if for any risk X  and any real constant c  (if a pricing method is defined 
only for the non-negative risks then the constant c  can be claimed to be non-negative in order to 
avoid situations when 0<cX + , i.e., situations when the value ][ cX +π  is undefined) holds the 
identity  

 ;][=][ cXcX ++ ππ  (4) 
iterativity property if for any two risks X  and Y  holds the identity  

 ];[=]]|[[ XYX πππ  (5) 
scale invariance property if for any risk X  and any positive real constant Θ  holds the identity  

 ].[=][ XX ππ ΘΘ  (6) 
More information about the defined methods of pricing of the insurance contracts as well 

as the properties that can be possessed by the insurance premium calculation principles can be 
found, for example, in Asmussen and Albrecher (2010), Boland (2007), Bowers et al (1997), 
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Buhlmann (1970), Dickson (2005), Gerber (1979), De Vylder et al (1984), De Vylder et al 
(1986), Kaas et al (2008), Kremer (1999), Rolski et al (1998), Straub (1988). 

We would like to emphasize that the research related to theorems of characterization type 
for properties possessed by certain insurance premium calculation principles was initiated by  the 
Swiss mathematician Hans-Ulrich Gerber, see Gerber (1979). 

 
2. Additivity Property 

 
The following theorem describes the necessary and sufficient conditions for attainment of the 
additivity property by the insurer equivalent utility premium calculation principle.  

  
Theorem 2.1. The insurer equivalent utility premium calculation principle possesses the 
additivity property if and only if ,=)( baxxU +  for ,0>a  or ,=)( γα β +− − xexU  for 

,0>],[min βα  i.e., only in the cases when it coincides with either the net premium principle or 
the exponential premium principle. 

 

Observe that the class of functions ,=)( γα β +− − xexU  for ,0>],[min βα  contains all 
functions of the form ,=)( xxU −−τ  for some real constant .1>τ  

 
Proof. Let us from the beginning prove the sufficiency of the statement. We start from the case 
of ,=)( baxxU +  for .0>a  Indeed, in this case for any two independent risks 1X  and 2X , and 
any insurer's initial capital ,W  from the equation (1) it follows  

 i.e.u.[ ( [ ] ) ], for 1,2,i iaW b a W X X b iπ+ = + − + =E  
and thus  

 i.e.u. net[ ] [ ] [ ], for 1,2.i i iX X X iπ π= = =E  
On the other hand, from the same equation it follows  

 i.e.u. 1 2 1 2[ ( [ ] ) ],aW b a W X X X X bπ+ = + + − − +E  
hence  

 i.e.u. 1 2 1 2 i.e.u. 1 i.e.u. 2[ ] [ ] [ ] [ ] [ ],X X X X X Xπ π π+ = + = +E E  
so, we could see that the insurer equivalent utility premium calculation principle possesses the 
additivity property in the case of the linear insurer's utility function. 

Let us now switch to the case of ,=)( γα β +− − xexU  for .0>],[min βα  Here for any two 
independent risks 1X  and ,2X  and any insurer's initial capital ,W  we get  

 
( [ ] )i.e.u.[ ], for 1,2,
W X XW i ie e i

β πβα γ α γ
− + −−− + = − + =E  

which yields  

 i.e.u. exp( )
1

[ ] log( [ ]) [ ], for 1,2.
Xi

i iX e X i
β

βπ π
β

= = =E  

Moreover  

 
( [ ] )i.e.u. 1 2 1 2[ ],
W X X X XWe e

β πβα γ α γ
− + + − −−− + = − +E  

hence  

 1 2
i.e.u. 1 2 i.e.u. 1 i.e.u. 2

1 1
[ ] log( [ ]) log( [ ]) [ ] [ ],

X X
X X e e X X

β β
π π π

β β
+ = + = +E E  

and as we have seen, the additivity property is possessed by the insurer equivalent utility 
premium calculation principle in the case of the exponential insurer's utility function. 

Proof of the sufficiency was finished, so we can start to prove the necessity. 
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Observe that the insurer equivalent utility premium calculation principle is invariant with 

respect to the linear transformations of the function ,)(xU  i.e., the principle based on the utility 
function )(xU  and the principle based on the utility function 21 )(=)( lxUlxU + , for ,0>1l  will 
produce the same premiums. Here the condition 0>1l  is imposed because otherwise the 
assumption of positivity of first derivative of the function )(xU  will vanish. 

In order to simplify the computations, we will fix the value of the insurer's initial capital 
,W  derive all possible representations (in the case when the insurer equivalent utility principle is 

additive) for the function )(xU  with  
 ),()/(=and)(1/= 21 WUWUlWUl '' −  

and then we will switch back to the function .)(xU  
Observe that the just defined utility function )(xU  satisfies the following boundary 

conditions  
 ,=)(and1,=)(0,=)( κWUWUWU '''  (7) 

for some real constant .0≤κ  
Let us now consider a risk X  which takes only two possible values, namely t  (here t  is 

any real number different from zero) and 0  with probabilities p  and p−1  respectively. The 
risk X  can be viewed as a random function of the parameters p  and t , and, therefore, within 
the proof of Theorem 2.1 will be denoted as t

pX . 

Equation (1) based on the utility function )(xU  for the risk t
pX  will have the following 

form  
 i.e.u. i.e.u.( ) ( [ ] )· ( [ ])·(1 ).t t

p pU W U W X t p U W X pπ π= + − + + −  (8) 
Putting 1=p  into (8), obtain  

 i.e.u. 1( ) = ( [ ] ).tU W U W X tπ+ −  (9) 

Since 0>)(xU '  for all ,x  then from (9) it follows  
 .=][ 1i.e.u. tX tπ  (10) 
Let us calculate partial derivatives with respect to p  from both sides of the equation (8)  

 
i.e.u. i.e.u. i.e.u.

i.e.u. i.e.u. i.e.u.

0 ( [ ] )· [ ]· ( [ ] )

               ( [ ])· [ ]·(1 ) ( [ ]

 

.

 

)

t t t
p p p

t t t
p p p

U W X t X p U W X t
p

U W X X p U W X
p

π π π

π π π

′

′

∂
= + − + + −

∂
∂

+ + − − +
∂

 (11) 

Substituting 1=p  into the equation (11) and using the identity (10), obtain  

 ).()(][)(=0
1=

i.e.u. tWUWUX
p

WU
p

t
p

' +−+
∂
∂

⋅ π  (12) 

Putting boundary conditions 0=)(WU  and 1=)(WU '  into the equation (12), we obtain a 
representation for the partial derivative with respect to the parameter p  of the premium at the 
point 1=p , namely,   

                                              ).(=][
1=

i.e.u. tWUX
p p

t
p +

∂
∂ π                                              (13) 

Let us consider also a risk ,Y  independent of ,X  taking two possible values, namely h  
(here h  is any non-zero real number) and 0  with probabilities q  and q−1  respectively. Being a 
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random function of the parameters h  and q  the risk Y  within the proof of Theorem 2.1 will be 
denoted as .h

qY  Using manipulations similar to those performed with the risk ,t
pX  one can 

conclude that  
 ,=][ 1i.e.u. hY hπ  (14) 

and that the partial derivative with respect to the parameter q  of the premium at the point 1=q  
is  

 ).(=][
1=

i.e.u. hWUY
q q

h
q +

∂
∂ π  (15) 

Now, let us look at a risk ht
qpZ ,

,  defined in the following way  

 .:=,
,

h
q

t
p

ht
qp YXZ +  

The risk ht
qpZ ,

,  will take the values ,ht +  ,t  ,h  and 0  with probabilities ,qp  ,)(1 qp −  
,)(1 qp−  and ))(1(1 qp −−  respectively. 

If the insurer equivalent utility principle is additive then the following must hold  
 ].[][=][ i.e.u.i.e.u.

,
,i.e.u.

h
q

t
p

ht
qp YXZ πππ +  

In this case equation (1) for the risk ht
qpZ ,

,  based on the function )(xU  will have a form 

 

i.e.u. i.e.u.

i.e.u. i.e.u.

i.e.u. i.e.u.

i.e.u. i.e.u.

( ) ( [ ] [ ] )· ·

               ( [ ] [ ] )· ·(1 )

               ( [ ] [ ] )·(1 )·

              ( [ ] [ ]

t h
p q

t h
p q

t h
p q

t h
p q

U W U W X Y t h p q

U W X Y t p q

U W X Y h p q

U W X Y

π π

π π

π π

π π

= + + − −

+ + + − −

+ + + − −

+ + + )·(1 )·(1 ).p q− −

 (16) 

Let us now calculate partial derivatives with respect to p  from both sides of the equation 
(16)  

 

i.e.u. i.e.u. i.e.u.

i.e.u. i.e.u.

i.e.u. i.e.u. i.e.u.

i.e.u. i.e.u.

0 ( [ ] [ ] )· [ ]· ·

( [ ] [ ] )·

( [ ] [ ] )· [ ]· ·(1 )

   

 

  

   ( [ ]

    

      

[

t h t
p q p

t h
p q

t h t
p q p

t h
p q

U W X Y t h X p q
p

U W X Y t h q

U W X Y t X p q
p

U W X Y

π π π

π π

π π π

π π

′

′

∂
= + + − −

∂

+ + − −

∂
+ + −

+

+

−
∂

+

+

+

i.e.u. i.e.u. i.e.u.

i.e.u. i.e.u.

i.e.u. i.e.u. i.e.u.

i.e.u.

] )·(1 )

( [ ] [ ] )· [ ]·(1 )·

( [ ] [ ] )·

( [ ] [ ])· [ ]·(1 )·(1 )

     

      

      

      

 ( [

t h t
p q p

t h
p q

t h t
p q p

t q

U W X Y h X p q
p

U W X Y h q

U W X Y X p q
p

U W

π π π

π π

π π π

π

′

′

− −

∂
+ + − −

∂

+ + −

∂
+ + − −

∂

− +

+

−

+

i.e.u.] [ ])·(1 ).t h
p qX Y qπ+ −

 (17) 

The next step is to take partial derivatives with respect to the parameter q  from both 
sides of the equation (17), here we get  
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i.e.u. i.e.u. i.e.u. i.e.u.

i.e.u. i.e.u. i.e.u.

i.e.u. i.e.u. i.e.u.

i.e.u.

0  = ( [ ] [ ] ) [ ] [ ]

( [ ] [ ] ) [ ]

( [ ] [ ] ) [ ]

( [ ]

'' t h t h
p q p q

' t h t
p q p

' t h h
p q q

t
p

U W X Y t h X Y p q
p q

U W X Y t h X p
p

U W X Y t h Y q
q

U W X

π π π π

π π π

π π π

π

∂ ∂
+ + − − ⋅ ⋅ ⋅ ⋅

∂ ∂
∂

+ + + − − ⋅ ⋅
∂
∂

+ + + − − ⋅ ⋅
∂

+ + i.e.u.

i.e.u. i.e.u. i.e.u. i.e.u.

i.e.u. i.e.u. i.e.u.

i.e.u. i.e.u. i.e.u.

[ ] )

( [ ] [ ] ) [ ] [ ] (1 )

( [ ] [ ] ) [ ]

( [ ] [ ] ) [ ] (1

h
q

'' t h t h
p q p q

' t h t
p q p

' t h h
p q q

Y t h

U W X Y t X Y p q
p q

U W X Y t X p
p

U W X Y t Y q
q

π

π π π π

π π π

π π π

+ − −

∂ ∂
+ + + − ⋅ ⋅ ⋅ ⋅ −

∂ ∂
∂

− + + − ⋅ ⋅
∂
∂

+ + + − ⋅ ⋅ −
∂

i.e.u. i.e.u.

i.e.u. i.e.u. i.e.u. i.e.u.

i.e.u. i.e.u. i.e.u.

i.e.u. i.e.u.

)

( [ ] [ ] )

( [ ] [ ] ) [ ] [ ] (1 )

( [ ] [ ] ) [ ] (1 )

( [ ] [ ] )

t h
p q

'' t h t h
p q p q

' t h t
p q p

' t h
p q

U W X Y t

U W X Y h X Y p q
p q

U W X Y h X p
p

U W X Y h

π π

π π π π

π π π

π π

− + + −

∂ ∂
+ + + − ⋅ ⋅ ⋅ − ⋅

∂ ∂
∂

+ + + − ⋅ ⋅ −
∂

− + + − ⋅ i.e.u.

i.e.u. i.e.u.

i.e.u. i.e.u. i.e.u. i.e.u.

i.e.u. i.e.u. i.e.u.

i.e.u.

[ ]

( [ ] [ ] )

( [ ] [ ]) [ ] [ ] (1 ) (1 )

( [ ] [ ]) [ ] (1 )

( [ ]

h
q

t h
p q

'' t h t h
p q p q

' t h t
p q p

' t
p

Y q
q

U W X Y h

U W X Y X Y p q
p q

U W X Y X p
p

U W X

π

π π

π π π π

π π π

π

∂
⋅

∂

− + + −

∂ ∂
+ + + ⋅ ⋅ ⋅ − ⋅ −

∂ ∂
∂

− + + ⋅ ⋅ −
∂

− + + i.e.u. i.e.u.

i.e.u. i.e.u.

[ ]) [ ] (1 )

( [ ] [ ]).

h h
q q

t h
p q

Y Y q
q

U W X Y

π π

π π

∂
⋅ ⋅ −
∂

+ + +

  

Putting 1== qp  into the just derived equation, and using the identities (10) and (14), 
obtain  

 

i.e.u. i.e.u.
1 1

i.e.u. i.e.u.
1 1

i.e.u. i.e.u.
1 1

0 ( )· [ ] · [ ]

      ( )· [ ] ( )· [ ]

      ( )· [ ] ( )· [ ]

      ( )

 

( ) ( ) ( ).

t h
p q

p q

t h
p q

p q

h t
q p

q p

U W X Y
p q

U W X U W Y
p q

U W t Y U W h X
q p

U W U W t U W h U W t h

π π

π π

π π

′′

= =

′ ′

= =

′ ′

= =

∂ ∂
=

∂ ∂

∂ ∂
+ +

∂ ∂

∂ ∂
− + − +

∂ ∂

+ − + − + + + +

 (18) 
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Substituting identities (13) and (15), as well as identities 0=)(WU , 1=)(WU ' , and 
κ=)(WU '' , into the equation (18) we finally get an equation which the utility function )(xU  

must satisfy if the premium calculation principle is additive  
0 ( ) · ( )· ( ) ( )· ( ) ( )· ( ). U W h t U W t U W h U W t U W h U W h U W tκ ′ ′= + + + + + − + + − + +  (19) 
Solving the equation (19), we will investigate separately cases of 0=κ  and .0<κ  We 

start from the case of .0<κ  Since )(⋅U  is a concave function, then the following inequality 
takes place  

 ).(
2

)2()( tWUtWUWU
+≤

++  (20) 

Taking into account boundary condition ,0=)(WU  inequality (20) can be rewritten as  
 ).(2)2( tWUtWU +≤+  (21) 
Substituting ht =  into the equation (19), obtain  
 ).()(2)()2(=0 2 tWUtWUtWUtWU ' +⋅+−+++ κ  (22) 
In order to apply some asymptotic techniques, without of loss of generality, we assume 

for the moment that the value of the parameter t  is strictly positive. Using inequality (21) and 
taking into account that 0=)(WU  as well as ,0)( >xU '  for ,x∈  from the equation (22) we 
get  

2 2( 2 ) ( ) 2 ( ) ( )( ) 1 ( ).
2 ( ) 2 ( ) 2

U W t U W t U W t U W tU W t U W t
U W t U W t

κ κ κ′ + + + + + +
+ = ≤ = + +

+ +
 (23) 

Since ,0<κ  then from inequality (23) it follows that the function )(⋅U  must be bounded 
from above because otherwise the value )/2(1 tWU ++κ  would be negative for sufficiently large 
values of the parameter t  and this would contradict with the assumption of positivity of first 
derivative of  the function .)(⋅U  

Since the function )(⋅U  is increasing and bounded and 0=)(WU , then must exist a 
positive finite limit of )( tWU +  as the parameter t  tends to plus infinity and moreover, must 
exist the limit  

 0,=)(lim tWU '

t
+

+∞→
 (24) 

in addition to that for all {0}\∈h  there exist the limit  

 ( ) = ( ) lim lim( )t t

U W t h U W t h
U W t→+∞ →+∞

+ +
+ +

+
( ) = 1.lim

t
U W t

→+∞
+  (25) 

Dividing both parts of the equation (19) by )( tWU + , switching to the limit when t  
tends to plus infinity, and using the limit relations (24) and (25), we obtain an equation  

 1.)(=)( +++ hWUhWU ' κ  (26) 
The  equation (26) can be rewritten in the following equivalent form  

 .=
1)(
1])([ dh

hWU
hWUd κ

κ
κ

++
++  (27) 

From the equation (27) it follows  
 . constant   somefor ,=1)( )( ∈⋅++ + ccehWU hWκκ  (28) 
From (28), using boundary condition ,0=)(WU  (here, due to continuity of ,)(⋅U  the 

value )(WU  can be defined as )(lim 0 hWUh +→ ) we get  
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                              {0}.\for    ,1=)(
)(

∈
−⋅

+
−+

heehWU
WhW

κ

κκ

 (29) 

Due to continuity of the function ,)(⋅U  equation (29) can be rewritten in terms of ∈x   

 .1=)(
κ

κκ −⋅ − Wx eexU  (30) 

Taking into account that ,=)( κWU ''  using representation (30) and the transformation 
identity  

 ),()/(=and)(1/=for,)(=)( 2121 WUWUlWUllxUlxU '' −+  (31) 
we finally get corresponding admissible representation for the original utility function )(xU   

 
( )·

( )·( ) ( )( ) · ( ).
( ) ( )

U W W
U W xU W e U WU x e U W

U W U W

′′′ − ′′′

′′ ′′= − +  (32) 

From the representation (32) it follows that in the case of 0<)(WU ''  the function )(xU  
must be a function of the form  

 γα β +− − xexU =)(  
for some real constants ,α  ,β  and .γ  Moreover conditions 0>)(WU '  and 0<)(WU ''  imply 
additional restrictions on the parameters α  and ,β  namely, both of them must be strictly 
positive constants, or equivalently, .0>],[min βα  

Let us now switch to the case of .0=κ  In this case the equation (19) will be simplified to 
the following one 

 ).()()()()(=0 tWUhWUhWUtWUhtWU '' +⋅+−+⋅+−++  (33) 
Let us assume for a moment that the function )(⋅U  is bounded from above. Since 

derivative of the function )(⋅U  is strictly positive, then in the assumed case must exist the limit  
 0.=)(lim tWU '

t
+

+∞→
 (34) 

If the function )(⋅U  is increasing and bounded with 0=)(WU  then there exist a finite 
limit  

 0,>=)(lim ctWU
t

+
+∞→

 (35) 

and, moreover, for all {0}\∈h  there exist the limit  

 ( )lim lim ( ) 
( )t t

U W t h U W t h
U W t→+∞ →+∞

+ +
= + +

+
lim ( ) 1.

t
U W t

→+∞
+ =  (36) 

Combination of (34) and (35) yields  

 ( )lim lim ( ) 
( )t t

U W t U W t
U W t

′
′

→+∞ →+∞

+
= +

+
lim ( ) 0.

t
U W t

→+∞
+ =  (37) 

Dividing both sides of the equation (33) by )( tWU + , switching to the limit as the 
parameter t  tends to plus infinity, and using the limit relations (36) and (37), obtain  

 ( ) 1, for all \{0}.U W h h′ + = ∈  (38) 
The equation (38) contradicts with the limit relation (34). This means that the assumption 

of boundedness from above of the function )(⋅U  in the case of 0=κ  was wrong. Therefore in 
the case of 0=κ  must hold the following limit relation  

 .=)(lim +∞+
+∞→

tWU
t

 (39) 
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Since we analyze the  limit behavior of the equation (33) when the parameter t  tends to 

plus infinity, then for any fixed ,{0}\∈h  without of loss of generality, we may assume that 
the parameter t  is larger than the parameter .h  Due to concavity of the function ,)(⋅U  for any 

,0>h  from inequality  
 htWtWhW ++++ <<  

for any [0,  1]θ ∈  it follows  
 ( ( ) (1 )( ))  ( ) (1 ) ( ).U W h W t h U W h U W t hθ θ θ θ+ + − + + ≥ + + − + +  (40) 

Putting th/=θ  into (40), obtain  

 ( )( )( )   ( ) ( )h t h W t h h t hU W h U W h U W t h
t t t t

− + + − + + ≥ + + + + 
 

 

or equivalently  

 ( )  ( ) ( ).h t hU W t U W h U W t h
t h

−
+ ≥ + + + +  (41) 

It is more convenient for us to write inequality (41) in the following form  

 ( ) ( )  ( ).t hU W t U W h U W t h
t h t h

+ − + ≥ + +
− −

 (42) 

Observe that  

 ( ) ( ) ~  ( ) as .t hU W t U W h U W t t
t h t h

+ − + + → +∞
− −

 (43) 

Here notation  
 +∞→ttgtg as)()( 21   

means  

 1.=
)(
)(

lim
2

1

tg
tg

t +∞→
 

Since derivative of the function )(⋅U  is strictly positive, then, for any 0>h  and any 
admissible ,t  holds inequality  

 ).(>)( tWUhtWU +++  (44) 
Combination of (42) and (44) yields  

    ( ) ( ) ( ) ) ( .t hU W t U W h U W t h U W t
t h t h

+ − + ≥ + + > +
− −

 (45) 

Switching to the limit as +∞→t  and using (43), obtain  

 ( )lim 1, for all 0.
( )t

U W t h h
U W t→+∞

+ +
= >

+
 (46) 

In the case of 0<h  for t  large enough (namely for 0>t ) hold inequalities  
 .<< tWhtWhW ++++  (47) 
From the inequalities (47) due to concavity of the function )(⋅U  for any [0, 1]θ ∈  it 

follows  
 ( ( ) (1 )( ))  ( ) (1 ) ( ).U W h W t U W h U W tθ θ θ θ+ + − + ≥ + + − +  (48) 
Substituting )/(= thh −θ  into the inequality (48), obtain  

 ( )  ( ) ( ).h tU W t h U W h U W t
h t t h

+ + ≥ + + +
− −

 (49) 

Observe that  

 ( ) ( ) ~  ( ) as .h tU W h U W t U W t t
h t t h

+ + + + → +∞
− −

 (50) 
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Since 0<h  and )(⋅U  is an increasing function, then  
 ).(>)( htWUtWU +++  (51) 
Combination of (49) and (51) yields  

 ( ) ( ) ( ) ( ).   h tU W t U W t h U W h U W t
h t t h

+ > + + ≥ + + +
− −

 (52) 

Switching to the limit as t  tends to plus infinity and using the limit relation (50), we get  

 ( )lim 1, for all 0.
( )t

U W t h h
U W t→+∞

+ +
= <

+
 (53) 

Since )(⋅'U  is a non-increasing (because 0)( ≤⋅''U ) positive function, then from the limit 
relation (39) it follows  

 0.=
)(
)(

lim tWU
tWU '

t +
+

+∞→
 (54) 

Dividing both sides of the equation (33) by )( tWU + , switching to the limit as t  tends to 
plus infinity and using the limit relations (46), (53),  and (54), obtain  

 {0}.\for   1,=)( ∈+ hhWU '  (55) 
Due to continuity of the function ,)(⋅'U  equation (55) can be rewritten in terms of the 

parameter ∈x , namely,  
 1.=)(xU '  (56) 
From the equation (56), using boundary condition 0=)(WU , we obtain the second 

admissible representation for the utility function )(⋅U   
 .=)( WxxU −  (57) 
Combining (57) with the transformation identity  
 ),()/(=and)(1/=for,)(=)( 2121 WUWUlWUllxUlxU '' −+  (58) 

we finally get corresponding admissible representation for the original utility function )(xU   
 ).())((=)( WuWxWUxU ' +−  (59) 

Equation (59) means that the tangent straight line to the function )(xU  at the point W  coincides 
with the function )(xU  itself, and hence the function )(xU  must be a function of the form  

 baxxU +=)(  
for some real constants a  and .b  Moreover, the constant a  must be a strictly positive constant 
because otherwise this would contradict with the assumption of positivity of first derivative of 
the function )(xU . 

This completes the proof of Theorem 2.1.                                                                          ⁪ 
 
Let us now show that the insurer equivalent utility premium principle coincides with the 

net premium principle if and only if ,=)( baxxU +  for ,0>a  and coincides with the exponential 
premium principle if and only if ,=)( γα β +− − xexU  for .0>],[min βα  

For this reason we will need the following inequality  

 [ ]
exp( ) net

1 1 [ ] log( [ ]) log( ) [ ] [ , ]X XX e e X Xβ β
βπ π

β β
= ≥ = =EE E  

and, moreover, exact equality in the inequality [ ][ ]X Xe eβ β≥ EE  appears if and only if 
1=}={P CX  for some constant .C∈  Therefore, generally speaking, the net premium 

principle is not a special case of the exponential premium principle and viceversa. 
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Let us now assume that for some function ,)(xU  different from the exponential function, 

the insurer equivalent utility premium principle will be equivalent to the exponential premium 
principle. Then, due to additivity of the exponential premium principle, such method of pricing 
must be additive. However in the proof of Theorem 2.1 was shown that the insurer equivalent 
utility premium calculation principle is additive if and only if ,=)( baxxU +  for ,0>a  and 

,=)( γα β +− − xexU  for .0>],[min βα  Here the case of ,=)( baxxU +  for ,0>a  corresponds to 
the net premium principle, which, as was demonstrated, generally speaking is not a special case 
of the exponential premium principle. As we see, original assumption about the existence of a  
non-exponential insurer's utility function )(xU  which would produce a principle equivalent to 
the exponential premium principle leads to a contradiction. Therefore, the case of 

,=)( γα β +− − xexU  for ,0>],[min βα  is indeed the only case when the insurer equivalent utility 
premium principle is equivalent to the exponential premium principle. 

Using similar contradiction technique one can conclude that the case of ,=)( baxxU +  
for ,0>a  is the only case when the insurer equivalent utility premium principle is equivalent to 
the net premium principle. 

Since the insurer's initial capital in the proof of Theorem 2.1 was chosen arbitrary and no 
restriction on it had been used within the proof, then we can formulate the following corollary to 
Theorem 2.1. 

  
Corollary 2.1. The insurer zero utility premium calculation principle possesses the additivity 
property if and only if ,=)( baxxU +  for ,0>a  or ,=)( γα β +− − xexU  for ,0>],[min βα  i.e., 
only in the cases when it coincides with either the net premium principle or the exponential 
premium principle.   
 

3. Iterativity Property 
 

The following theorem describes the necessary and sufficient conditions imposed on the insurer's 
utility function under which the iterativity property is possessed by the insurer equivalent utility 
premium calculation principle.   
 
Theorem 3.1. The insurer equivalent utility premium calculation principle possesses the 
iterativity property if and only if ,=)( baxxU +  for ,0>a  or ,=)( γα β +− − xexU  for 

,0>],[min βα  i.e., only in the cases when it coincides with either the net premium principle or 
the exponential premium principle.   
 
Proof. Let us from the beginning prove the sufficiency of the statement. We start from the linear 
utility function ,=)( baxxU +  for ,0>a  and show that in this case the insurer equivalent utility 
premium principle is equivalent to the net principle. Indeed, here for any risk ,X  and any 
insurer's initial capital ,W  equation (1) will be simplified to the following one 

 i.e.u.[ ( [ ] ) ],aW b a W X X bπ+ = + − +E  
therefore, in the case of the linear insurer's utility function,  

 i.e.u. net[ ] [ ] [ ].X X Xπ π= =E  
Then, for any two risks X  and ,Y  any insure's initial capital ,W  and the same insurer's utility 
function, form the equation (1) we get  

 i.e.u.[ | ] [ | ] ,aW b aW a X Y a X Y bπ+ = + − +E  
therefore, in the case of the linear insurer's utility function,  

 i.e.u.[ | ] [ | ],X Y X Yπ =E  
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moreover, from the same equation, it follows  

 i.e.u. i.e.u. i.e.u.[ [ | ]] [ [ | ]] ,aW b aW a X Y a X Y bπ π π+ = + − +E  
and we finally get  

 i.e.u. i.e.u. i.e.u. net i.e.u.[ [ | ]] [ [ | ]] [ [ | ]] [ ] [ ] [ ]X Y X Y X Y X X Xπ π π π π= = = = =E E E E  
thus, the iterativity property is possessed by the insurer equivalent utility principle in the case of 
the linear insure's utility function. 

 Let us now switch to the case of the exponential insurer's utility function, i.e., the case of 
,=)( γα β +− − xexU  for .0>],[min βα  We show first that this is the case when the insurer 

equivalent utility premium principle is equivalent to the exponential premium principle. Here for 
any risk X  and any insurer's initial capital W  from the equation (1) we get  

 i.e.u.
( [ ] )[ ],W X XWe e β πβα γ α γ− + −−− + = − +E  

which yields  

 i.e.u. exp( )
1[ ] log( [ ]) [ ].XX e Xβ

βπ π
β

= =E  

Then, for any two risks X  and ,Y  any insurer's initial capital ,W  and the same 
exponential utility function, from the equation (1) we get  

 i ..e.u [ | ]· · [ | ] ,X YW W Xe e e e Yβπβ β βα γ α γ−− − −− + = − +E  
therefore, in the case of the exponential insurer's utility function  

 i.e.u. exp( )
1[ ] log( [ ]) [ ].XX e Xβ

βπ π
β

= =E  

Moreover, from the equation (1) for the risk ]|[i.e.u. YXπ  in the case of the exponential utility 
function, namely,  

 i.e.u. i.e.u. i.e.u.[ [ | ]] [ | ]· · [ ] ,X Y X YW We e e eβπ π βπβ βα γ α γ− −− −− + = − +E  
obtain  

 

i.e.u.

1· log( [ | ])
[ | ]

i.e.u. i.e.u.

exp( )

i.e.u.

1 1[ [ | ]] log( [ ]) log( [ ])

1 1                    

                 

         log( [ [ | ]])

        

log( [ ]

    

) [ ]

[ ],

Xe Y
X Y

X X

X Y e e

e Y e X

X

ββ
βπ β

β β
β

π π
β β

π
β β
π

−−
−

− −

= =

=

=

= =

E
E E

E E E   

hence, the iterativity property is also possessed by the insurer equivalent utility principle in the 
case of the exponential utility function. 

Proof of the sufficiency was finished, so we can start to prove the necessity. 
Let us now consider a risk X  taking only two possible values, namely t  (here t  is any 

real number different from zero) and 0  with probabilities p  and p−1  respectively. Being a 
random function of the parameters t  and p  within the proof of Theorem 3.1 the risk X  will be 
denoted as t

pX . 
Equivalent utility equation (1) for any insurer's initial capital W  and any insurer's utility 

function )(⋅U  for the risk t
pX  will have a form  

 ).(1])[()][(=)( i.e.u.i.e.u. pXWUptXWUWU t
p

t
p −⋅++⋅−+ ππ  (60) 

From the equation (60), assigning 0=p , we get  
 ]).[(=)( 0i.e.u.

tXWUWU π+  (61) 
Since 0>)(xU '  for all ,x  then from the equation (61) it follows  
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                                                          0.=][ 0i.e.u.

tXπ                              (62) 
Substituting 1=p  into the equation (60), obtain  

 ),][(=)( 1i.e.u. tXWUWU t −+π  (63) 
again, since 0>)(xU '  for all ,x  then from the equation (63) we get  

 .=][ 1i.e.u. tX tπ  (64) 
Differentiation of the equation (60) with respect to the parameter p  yields  

 
i.e.u. i.e.u. i.e.u.

i.e.u. i.e.u. i.e.u.

0 = ( [ ] ) [ ] ( [ ] )

( [ ]) [ ] (1 ) ( [ ]).

' t t t
p p p

' t t t
p p p

U W X t X p U W X t
p

U W X X p U W X
p

π π π

π π π

∂
+ − ⋅ ⋅ + + −

∂
∂

+ + ⋅ ⋅ − − +
∂

 (65) 

Taking into account strict monotonicity of the function )(⋅U , the equation (65) can be 
rewritten in the following way  

 .
)])(1[()][(

)][(])[(
=][

i.e.u.i.e.u.

i.e.u.i.e.u.
i.e.u. pXWUptXWU

tXWUXWU
X

p t
p

't
p

'

t
p

t
pt

p −++−+

−+−+

∂
∂

ππ
ππ

π  (66) 

From the representation (66) it follows  

 0.for   0,][i.e.u. ≠≠
∂
∂ tX
p

t
pπ  (67) 

Substituting 0=p  into the equation (65), using the identity (62), we get an equation 
which will be used a bit later, namely,  

 .][)()()(=0
0=

i.e.u.
p

t
p

' X
p

WUWUtWU π
∂
∂

⋅+−−  (68) 

Let Y  be a variable taking values 1h  and 2h  (here ih , for ,21,=i  are arbitrary real 
numbers from the interval [0, 1]) with probabilities 1/2  and 1/2 . And let X  be a risk with the 
following conditional distribution, defined under known values of the variable ,Y   

 
P{ = | = } = , for   = 1,2;

P{ = 0| = } = 1 , for   = 1,2.
i i

i i

X t Y h h i

X Y h h i−
  

Using the formula of complete probability, we can find out the unconditional distribution 
of the risk X , namely,  

 

2
1 2

1
2

1 2

1

{ } { | }· { } ;
2

{ 0} { 0| }· { } 1 .
2

i i
i

i i
i

h hX t X t Y h Y h

h hX X Y h Y h

=

=

+
= = = = = =

+
= = = = = = −

∑

∑

P P P

P P P
  

As we see, unconditional distribution of the risk X  coincides with distribution of the risk t
pX , 

where )/2(= 21 hhp + , therefore, the following identity must hold  
 ].[=][ i.e.u.i.e.u.

t
pXX ππ  (69) 

Observe that the equivalent utility equation (1) for ]=|[i.e.u. ihYXπ , here 21,=i , namely,  
),(1])=|[()]=|[(=)( i.e.u.i.e.u. iiii hhYXWUhthYXWUWU −⋅++⋅−+ ππ  

coincides with the equivalent utility equation for ,][i.e.u.
tX
ihπ  here also ,21,=i  namely,  
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),(1])[()][(=)( i.e.u.i.e.u. iihiih htXWUhttXWUWU −⋅++⋅−+ ππ  

therefore, the following identity must hold  

 ,21,=for    ],[=]=|[ i.e.u.i.e.u. itXhYX
ihi ππ  (70) 

moreover, in the case of the iterative insurer equivalent utility premium principle  
 ]].|[[=][ i.e.u.i.e.u.i.e.u. YXX πππ  (71) 
The identity (71), in combination with (1), implies the equivalent utility equation  
 ])].|[][([E=)( i.e.u.i.e.u. YXXWUWU ππ −+  (72) 
Taking into account possible values of the variable ,Y  the equation (72) can be rewritten 

in the following equivalent form  

 ]).=|[][(
2
1=)( i.e.u.i.e.u.

2

1=
i

i
hYXXWUWU ππ −+∑  

Taking into account identities (69) and (70) we can modify the equation (72) a bit further  

 
1 2

2

i.e.u. i.e.u.
1 2

1( ) ( [ ] [ ]).
2 i

t t
h h h

i
U W U W X Xπ π+

=
= + −∑  (73) 

Let us now differentiate equation (73) with respect to ,1h  obtain  

 
1 2 1 1 2 1

1 2 2 1 2

i.e.u. i.e.u. i.e.u. i.e.u.
1 12 2

i.e.u. i.e.u. i.e.u.
12 2

1 10 ( [ ] [ ])· [ ] [ ]
2 2

1 1( [ ] [ ])· [

  

      ].
2

 
2

t t t t
h h h h h h

t t t
h h h h h

U W X X X X
h h

U W X X X
h

π π π π

π π π

′
+ +

′
+ +

 ∂ ∂
= + − − 

∂ ∂  

+
∂

+ −
∂

 

Let us also differentiate just obtained equation with respect to ,1h  here we get  

 

1 2 1 1 2 1

1 2 1 1 2

1 2

2

i.e.u. i.e.u. i.e.u. i.e.u.
1 12 2
2

i.e.u. i.e.u. i.e.u.2
12 2

i.e.u.
2

1 10 ( [ ] [ ])· [ ] [ ]
2 2

1 1      ( [ ] [ ])· [ ]
2 4 ( )

1      ( [ ]
2

 t t t t
h h h h h h

t t t
h h h h h

t
h h

U W X X X X
h h

U W X X X
h

U W X

π π π π

π π π

π

′′
+ +

′
+ +

′
+

 ∂ ∂
= + − − 

∂ ∂  

∂
+ + −

∂

− +
1 1

1 2 2 1 2

1 2 2 1 2

2

i.e.u. i.e.u.2
1

2

i.e.u. i.e.u. i.e.u.
12 2

2

i.e.u. i.e.u. i.e.u.2
12 2

      

  

[ ])· [ ]

 

( )

1 1( [ ] [ ])· [ ]
2 2

1 1( [ ] [ ])· [  ].
2 4 (

 
)

t t
h h

t t t
h h h h h

t t t
h h h h h

X X
h

U W X X X
h

U W X X X
h

π π

π π π

π π π

′′
+ +

′
+ +

∂
−

∂

 ∂
+ −  

∂  

∂
++ −

∂

+

 

Putting hhh =:= 21  into the last equation, obtain  

 

2 2

i.e.u. i.e.u.2

2

i.e.u. i.e.u.2

1 1 1 30 ( )· [ ] ( )· [ ]
2 2 2 4 ( )

1 1 1 1       ( )· [ ] ( )· [ ] ,
2 2 2 4 (

 

)

 t t
h h

t t
h h

U W X U W X
h h

U W X U W X
h h

π π

π π

′′ ′

′′ ′

 ∂ ∂ = + −  ∂ ∂   
 ∂ ∂ + +   ∂ ∂   

 (74) 
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simplifying (74) we get differential equation for ][i.e.u.

t
hXπ  as a function of the parameter h  

defined for ,10 ≤≤ h  namely,  

 ].[
)(

)(=][)( i.e.u.2

22

i.e.u.
t
h

't
h

'' X
h

WUX
h

WU ππ
∂
∂

⋅




∂
∂

⋅  (75) 

with boundary conditions, which follow from (62) and (64),  
 .=][and0=][ 1i.e.u.0i.e.u. tXX tt ππ  (76) 
Since the function )(⋅U  is a concave function, then 0)( ≤WU '' . Let us solve the equation 

(75) separately for the cases of 0<)(WU ''  and 0=)(WU '' . We start from the case of 
0=)(WU '' . In this case the equation (74) will be simplified to the following one 

 0.=][
)( i.e.u.2

2
t
hX

h
π

∂
∂  (77) 

Solution to the equation (77) must have a form  
 i.e.u. 1 2 1 2[ ] , for some constants  and .t

hX hπ κ κ κ κ= +  (78) 
Applying boundary conditions (76) to the solution (78) we see that the solution to the 

equation (75) with boundary conditions (76) in the case of 0=)(WU ''  is  
 .=][i.e.u. thX t

hπ  (79) 
Differentiatiation of the obtained solution (79) with respect to h  at the point 0=h  yields  

 .=][
0=

i.e.u. tX
h h

t
hπ

∂
∂  (80) 

Substituting representation (80) into the equation (68), we finally get an equation which 
the utility function )(⋅U  has to satisfy in the case of the iterative insurer equivalent utility 
premium calculation principle, namely,  

 .)()()(=0 tWUWUtWU '+−−  (81) 
The variable t  was taken from \{0},  however, due to continuity of the function ,)(⋅U  

making substitution ,=: xtW −  equation (81) can be rewritten in terms of the original parameter 
:x∈   
 ).()()(=)( WUWxWUxU ' +−⋅  (82) 
Representation (82) can be interpreted as follows: the tangent straight line to the function 

)(⋅U  at the point Wx =  coincides with the function )(⋅U  itself, therefore, in the case of 
,0=)(WU ''  the function )(⋅U  must be a function of the form  

 ,=)( baxxU +  
for some real constants a  and .b  Assumption of ,0>)(WU'  which follows from the original 
assumption of positivity of first derivative of the function )(⋅U , gives us additional restriction on 
the parameter :a  parameter a  must be a strictly positive constant. 

Let us now solve the equation (75) in the case of .0<)(WU ''  For the computational 
convenience we make a substitution  

,][:=)( i.e.u.
t
hX

h
hZ π

∂
∂  

and rewrite the equation (75) in the following form  
 ).()(=)()( 2 hZWUhZWU '''' ⋅  (83) 
Taking into account 0>)(WU '  as well as representation (67), with replacement of the 

parameter p  by the parameter h , equation (83) can be rewritten in the following way  
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                                                     .
)(
)(=2 dh

WU
WU

Z
dZ

'

''

                                      (84) 

Solution to the equation (84) is  

 1
1 1

( )( ) , for some constant .
( )

U WZ h h
U W

κ κ
′′

−
′− = −  

Switching back to ][i.e.u.
t
hXπ , obtain  

 .

)(
)(

1=][
1

i.e.u.

h
WU
WU

X
h

'

''
t
h

−∂
∂

κ
π  (85) 

Equation (85) can be slightly modified to the following one 

 .

)(
)(
)(
)(

)(
)(=][

1

1

i.e.u.

h
WU
WU

h
WU
WUd

WU
WUXd

'

''

'

''

''

'
t
h

−









−

⋅−
κ

κ
π  (86) 

Solution to the equation (86) is  

 i.e.u. 1 2 2
( ) ( )[ ] ·log , for some constant ,
( ) ( )

t
h

U W U WX h
U W U W

π κ κ κ
′ ′′

′′ ′= − − +  

or equivalently,  

 
2

( )
( )

i.e.u. 1
( ) ( )[ ] ·log .
( ) ( )

U W
t U W
h

U W U WX h e
U W U W

κ
π κ

′′

′
′ ′′ −

′′ ′

 
= − −  

 
 (87) 

Applying boundary condition 0=][ 0i.e.u.
tXπ  to the solution (87), we get  

 
2

( )
( )

1
( )log ·0 0,
( )

U W
U WU W e

U W

κ
κ

′′

′
′′ −

′

 
− =  

 
 

and hence  

 
2 2

( ) ( )
( ) ( )

1 1· 1, which means that .
U W U W
U W U We e

κ κ
κ κ

′′ ′′

′ ′−
= =  

Using just obtained values of 1κ , solution (87) can be rewritten in the following way  

 
2

( )
( )

i.e.u.
( ) ( )[ ] ·log 1 · · .
( ) ( )

U W
t U W
h

U W U WX h e
U W U W

κ
π

′′

′
′ ′′ −

′′ ′= − −  (88) 

Application of the boundary condition tX t =][ 1i.e.u.π  to the solution (88) implies  

 
2

( )
( )( ) ( )log 1 ·1· · .

( ) ( )

U W
U WU W U We t

U W U W

κ
′′

′
′′ ′′−

′ ′− = −  (89) 

Since 0>)(WU '  and at the moment we consider the case of 0<)(WU '' , then  

2
( )
( )( ) ( )0, hence, 1 · 0,

( ) ( )

U W
U WU W U W e

U W U W

κ
′′

′
′′ ′′ −

′ ′< − >  

therefore, identity (89) can be rewritten in the following way 
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2

( ) ( )·
( ) ( )( )· 1.

( )

U W U Wt
U W U WU W e e

U W

κ
′′ ′′

′ ′
′′ − −

′− = −                  (90) 

Combining solution (88) with the identity (90), we finally get the solution to the equation 
(75) satisfying boundary conditions (76) in the case of 0<)(WU '' , namely,  

 
( )·
( )

i.e.u.
( )[ ] log 1 1
( )

U Wt
t U W
h

U WX h e
U W

π

′′

′
′ −

′′

 
 = − + −
 
 

 

Knowing ][i.e.u.
t
hXπ , we get  

 

( )·
( )

i.e.u. ( )·
( )

( ) 1[ ] · .
( )

1

U Wt
U W

t
h U Wt

U W

U W eX
h U W

h he

π

′′

′

′′

′

−
′

′′
−

∂ −
= −

∂
− +

 (91) 

From (91) it follows  

 
( )·
( )

i.e.u.
0

( )[ ] · 1 .
( )

U Wt
t U W
h

h

U WX e
h U W
π

′′

′
′ −

′′
=

 ∂  = − −
 ∂
 

 (92) 

Combining (92) with the equation (68), we finally get an equation which the function 
)(⋅U  has to satisfy in the case of the iterative insurer equivalent utility premium calculation 

principle, namely, 

 
( )·
( )( )0 ( ) ( ) ( )· · 1 .

( )

U Wt
U WU WU W t U W U W e

U W

′′

′
′ −

′
′′

 
 = − − − −
 
 

 (93) 

The parameter t  was taken from \{0},  however, due to continuity of the function 
,)(⋅U  making substitution ,=: xtW −  equation (93) can be rewritten in terms of the original 

parameter :x∈  

 
( ) ( )2 2
( ) ( )( ( )) ( ( ))( ) · · ( ).

( ) ( )

U W U WW x
U W U WU W U WU x e e U W

U W U W

′′ ′′

′ ′
′ ′−

′′ ′′= − +  (94) 

From the representation (94) it follows that in the case of 0<)(WU ''  the function )(xU  
must be a function of the form  

 γα β +− − xexU =)(  
for some real constants ,α  ,β  and .γ  Moreover conditions 0>)(WU '  and 0<)(WU ''  imply 
additional restrictions on the parameters α  and ,β  namely, both of them must be strictly 
positive constants, or equivalently, .0>],[min βα   

This completes the proof of Theorem 3.1.                                                                         ⁪ 
 
In a way similar to the one presented in the previous section, the proof of Theorem 3.1 

can be used for showing that the case of ,=)( baxxU +  for ,0>a  is the only case when the 
insurer equivalent utility premium principle is equivalent to the net premium principle and that 

,=)( γα β +− − xexU  for ,0>],[min βα  is the only case when the insurer equivalent utility 
premium principle is equivalent to the exponential premium principle. 

Since we did not use any restrictions on the insurer's initial capital within the proof of 
Theorem 3.1, then we can formulate the following corollary to Theorem 3.1. 
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Corollary 3.1. The insurer zero utility premium calculation principle possesses the iterativity 
property if and only if ,=)( baxxU +  for ,0>a  or ,=)( γα β +− − xexU  for ,0>],[min βα  i.e., 
only in the cases when it coincides with either the net premium principle or the exponential 
premium principle.   

 

4. Consistency Property 
 

In contrast to the customer equivalent utility premium calculation principle which possesses the 
consistency property only for some special choices of the utility function,  the insurer equivalent 
utility principle (and also, as a consequence, the insurer zero utility principle) possesses the 
consistency property with arbitrary choice of the utility function. Indeed, since for any risk ,X  
any insurer's initial capital ,W  any insurer's utility function ,)(⋅U  and any ∈c  hold identities  

 
i.e.u.

i.e.u.

i.e.u.

( )  [ ( [ ] ( ))]
           [ ( ( [ ] ) )]
           [  ( [ ] )] ( ),

U W U W X c c X
U W X c c X
U W X X U W

π
π
π

= + + − +

= + + − −

= + − =

E
 E
E

  

then  
 ,][=][,lyequivalentor   ],[=][ i.e.u.i.e.u.i.e.u.i.e.u. cXcXXccX ++−+ ππππ  

so, we observe the fulfillment of the mentioned property. 
 

5. Scale Invariance Property 
 

The following theorem describes the necessary and sufficient conditions of attainment of the 
scale invariance property by the insurer equivalent utility premium calculation principle.   
 
Theorem 5.1.  The insurer equivalent utility premium calculation principle possesses the scale 
invariance property if and only if ,=)( baxxU +  for ,0>a  i.e., only in the case when it 
coincides with the net premium principle.   

 

Proof. We start from the sufficiency. In the case of ,=)( baxxU +  with ,0>a  for any risk X  
and any insurer's initial capital ,W  from the equation (1) it follows  

 i.e.u. i.e.u.[ [ ] ] [ ] [ ] ,aW b aW a X aX b aW a X a X bπ π+ = + − + = + − +E E  
and thus  

 i.e.u. net[ ] [ ] [ ].X X Xπ π= =E  
On the other hand, from the equation (1), for any ,0>Θ  the same risk ,X  the same 

insurer's initial capital ,W  and the same insurer's utility function, it follows  
 i.e.u. i.e.u.[ [ ] ] [ ] [ ] ,aW b aW a X a X b aW a X a X bπ π+ = + Θ − Θ + = + Θ − Θ +E E  

hence  
 i.e.u. i.e.u.[ ] [ ] [ ],X X Xπ πΘ = Θ = ΘE  

and we see that the scale invariance property holds in this particular case. 
The proof of the sufficiency was completed, so we switch to the necessity. 
To show that the insurer equivalent utility premium calculation principle with a non-

linear insurer's utility function )(xU  will not possess the scale invariance property, we will 
choose a risk X  which takes only two possible values, namely, 0  and t  (here t  is a non-zero 
real parameter) with probabilities p−1  and p  respectively. The risk X  can in this case be 
considered as a random function of  two parameters, namely p  and ,t  and, therefore, within the 
proof of Theorem 5.1 it will be denoted as t

pX . 
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For any insurer's initial capital ,W  and any insurer's utility function ,)(⋅U  the equivalent 

utility equation (1) for the risk t
pX  will take a form  

 ).(1])[()][(=)( i.e.u.i.e.u. pXWUptXWUWU t
p

t
p −⋅++⋅−+ ππ  (95)  

Substituting 1=p  into the equation (95), we get  

                     i.e.u. 1 i.e.u. 1

i.e.u. 1

( )  ( [ ] )·1 ( [ ])·0

           ( [ ] ).

t t

t

U W U W X t U W X

U W X t

π π

π

= + − + +

= + −
 (96) 

Since )(xU  is a strictly increasing function, then the identity (96) yields  
 .=][ 1i.e.u. tX tπ  (97) 

Taking partial derivatives with respect to p  from both sides of the equation (95), obtain  

 
i.e.u. i.e.u. i.e.u.

i.e.u. i.e.u. i.e.u.

0  ( [ ] )· [ ]· ( [ ] )

       ( [ ])· [ ]·(1 ) ( [ ]).

t t t
p p p

t t t
p p p

U W X t X p U W X t
p

U W X X p U W X
p

π π π

π π π

′

′

∂
= + − + + −

∂
∂

+ + − − +
∂

 (98) 

Substituting 1=p  into the equation (98), and using the identity (97), we obtain an equation  

 ).()(=][)(
1=

i.e.u. WUtWUX
p

WU
p

t
p

' −+
∂
∂

⋅ π  (99) 

Since the premium calculation principle has to be scale invariant, then for any insurer's 
initial capital ,W  and any positive constant ,Θ  the insurer's equivalent utility equation (1) for the 
risk t

pXΘ  can be written in the following way  

 ).(1])[()][(=)( i.e.u.i.e.u. pXWUptXWUWU t
p

t
p −⋅Θ++⋅Θ−Θ+ ππ  (100) 

Calculating partial derivatives with respect to p  from both sides of the equation (100), obtain  

 
i.e.u. i.e.u. i.e.u.

i.e.u. i.e.u. i.e.u.

0  ( [ ] )· · [ ]· ( [ ] )

       ( [ ])· · [ ]·(1 ) ( [ ]).

t t t
p p p

t t t
p p p

U W X t X p U W X t
p

U W X X p U W X
p

π π π

π π π

′

′

∂
= +Θ −Θ Θ + +Θ −Θ

∂
∂

+ +Θ Θ − − +Θ
∂

 (101) 

Substituting 1=p  into the equation (101), and using the identity (97), we obtain an equation  

 ).()(=][)(
1=

i.e.u. WUtWUX
p

WU
p

t
p

' −Θ+
∂
∂

⋅Θ⋅ π  (102) 

Since ,0>Θ  then the equation (102) can be rewritten in the following way  

 .)()(=][)(
1=

i.e.u. Θ
−Θ+

∂
∂

⋅
WUtWUX

p
WU

p

t
p

' π  (103) 

Note that the equations (99) and (103) have equal left-hand sides, and hens their right- 
hand sides also have to be equal; this finally gives us an equation which the insurer's utility 
function has to satisfy for the premium calculation principle to be scale invariant, namely,  

 .)()(=)()(
Θ
−Θ+

−+
WUtWUWUtWU  (104) 

Taking partial derivatives with respect to the parameter t  from both sides of (104) we get 
 ).(=)( tWUtWU '' Θ++  (105) 

By fixing values of the parameters W  and ,t  and changing values of the parameter ,Θ  we will 
make )( tWU ' Θ+  a function of changing variable while the value )( tWU ' +  will be a fixed  
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constant. Using this technique and taking into account monotonicity of the function )(⋅U  and 
continuity of the function ,)(⋅'U  since ,)()( 2 CU ∈⋅  as well as using equation (105) we 
conclude that  

 ( ) 0, for   .U x a x′ = > ∈  
Integration yields  

 ( ) , for  , and some constant  0.U x ax b x a= + ∈ >  
Let us give also a geometrical interpretation showing that the non-linear insurer's utility 

functions will not satisfy the equation (104). Let us consider two triangles: the first one will be 
formed by the points ,))(,( WUW  ,))(,( WUtW +  ))(,( tWUtW ++  and the second one will be 
formed by the points ,))(,( WUW  ,))(,( WUtW Θ+  .))(,( tWUtW Θ+Θ+  Observe that both 
triangles are right-angled triangles, they have a common vertex at the point ,))(,( WUW  and, 
moreover, the points ,))(,( WUW  ,))(,( WUtW +  and ))(,( WUtW Θ+  lie on the same straight 
line. With out of loss of generality, equation (104) can be rewritten in the following way 

 .
)(

)()(=
)(

)()(
WtW

WUtWU
WtW

WUtWU
−Θ+
−Θ+

−+
−+  (106) 

Geometrically, equation (106) can be interpreted as follows: ratio of the cathetuses in one 
of the triangles is equal to the ratio of the cathetuses in the other triangle, hence our two 
considered triangles are similar triangles. Due to the common vertex, the cathetuses which lie on 
a common straight line, and the vertexes which lie on the same half-plane with respect to the 
mentioned line, we conclude that the hypotenuses will also lie on a common straight line; in the 
other words, the points ,))(,( tWUtW Θ+Θ+  for any initial capital ,W  all non-zero ,t  and all 

,0>Θ  will form a straight line. So, we can conclude that the insurer's utility function )(xU  is a 
linear function, i.e., a function of the form .=)( baxxU +  Initial assumption of positivity of first 
derivative of the function )(xU  gives us additional restriction on the parameter :a   parameter a  
must be a strictly positive constant. This completes the proof of Theorem 5.1.                            ⁪ 

 
Applying contradiction technique, proof of Theorem 5.1 can be used for showing that the 

case of ,=)( baxxU +  for ,0>a  is the only case when the insurer equivalent utility premium 
principle coincides with the net premium principle. Indeed, let us assume that for some function 

,)(xU  different from the linear function, the insurer equivalent utility principle will be 
equivalent to the net premium principle. Then, due to the linearity property of the expectation, 
such method of pricing must be scale invariant. However it was shown in the proof of Theorem 
5.1 that the only case when the insurer equivalent utility principle will be scale invariant is the 
case of ,=)( baxxU +  for ,0>a  so we come to a contradiction. 

Due to the arbitrary choice of the insurer's initial capital in the proof of Theorem 5.1 and 
no restrictions on it within the proof, the following useful corollary to Theorem 5.1 can be 
formulated. 

    
Corollary 5.1. The insurer zero utility premium calculation principle possesses the scale 
invariance property if and only if ,=)( baxxU +  for ,0>a  i.e., only in the case when it 
coincides with the net premium principle.   
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